已知a>0,b>0.ab=a+b+3,求ab的最小值.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 14:36:44
已知a>0,b>0.ab=a+b+3,求ab的最小值.
xRN@~NM ֘4}O`dD%Y& D4р 0Mg+8vvgoP~zy2N-.־,àpw?2WOف^mڪ> *MF?=kV$%8zAC

已知a>0,b>0.ab=a+b+3,求ab的最小值.
已知a>0,b>0.ab=a+b+3,求ab的最小值.

已知a>0,b>0.ab=a+b+3,求ab的最小值.
若a,b为正实数,满足ab=a+b+3,求ab的范围.
∵a>0,b>0,∴ab=a+b+3>3.
令ab=u,则b=u/a,代入ab=a+b+3,得:
u=a+u/a+3=(a²+3a+u)/a
故a²+(3-u)a+u=0
由于a为实数,故其判别式:
△=(3-u)²-4u=u²-10u+9=(u-9)(u-1)≥0
即得u≥9或u≤1(舍去,因为已知u>3)
当u=ab=9时,a+b=6,且a=b=3.
即ab的取值范围为[9,+∞).
a+b的取值范围[6,+∞).

9
a>0,b>0,所以a+b>=2根号(ab)
a+b+3=2根号(ab)+3>=ab
解得
根号(ab)>=3, ab>=9, 当a=b=3时成立

9