求极限:x趋向于1,lim(m/1-x^m—n/1-x^n)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 00:36:15
求极限:x趋向于1,lim(m/1-x^m—n/1-x^n)
x){ټƗ3'XUt' ur2s5r u+r5L4mIӠ_`gCOv/ygBv XPAW$stsK&ji@Z3Ic<<<<\(ZfjCAnۙR w5r*/.H̳:0q

求极限:x趋向于1,lim(m/1-x^m—n/1-x^n)
求极限:x趋向于1,lim(m/1-x^m—n/1-x^n)

求极限:x趋向于1,lim(m/1-x^m—n/1-x^n)
令: x = 1+t
1 - x^m = 1 -(1+t)^m = -[mt + m(m-1)/2*t^2 + o(t^2)]
1 - x^n = 1 -(1+t)^n = -[nt + n(n-1)/2*t^2 + o(t^2)]
lim(m/1-x^m—n/1-x^n)
=lim [m(1-x^n) - n(1-x^m)]/(1-x^m)(1-x^n)
=lim { -[mnt + mn(n-1)/2*t^2 + o(t^2)] + [mnt + nm(m-1)/2*t^2 + o(t^2)]/(nmt^2 + o(t^2))
= mn(m-n)/2