k是什么值,方程(k^2-1)x^2-3(3k-1)x+18=0有两个不相等的正整数根

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/02 16:48:55
k是什么值,方程(k^2-1)x^2-3(3k-1)x+18=0有两个不相等的正整数根
xQN@Z"?`b$$ˢRK *Pj·̝+~)bf99;J1ikB<&> Uc %Rw9&㰌6$V3 =q,qب'tԧ'ZҞ(s\tvk1φCeT uxkr"$G05̺U(y,(?y X(_qSi$-.  ъN!VbEς$pp1$ Y0Xyj6*Z"6#Q`O"2K DgG||ǯ{+⧗~ESVJk'@U

k是什么值,方程(k^2-1)x^2-3(3k-1)x+18=0有两个不相等的正整数根
k是什么值,方程(k^2-1)x^2-3(3k-1)x+18=0有两个不相等的正整数根

k是什么值,方程(k^2-1)x^2-3(3k-1)x+18=0有两个不相等的正整数根
有一种经典思路
拆开得x^2k^2-9xk-x^2-3x+18=0,将其看做是关于k的方程,计算其判别式得x^2(2x+3)^2,所以k=[9x±x(2x+3)]/(2x^2)=[9±(2x+3)]/2x,化简得k=6/x+1或k=3/x-1,又因为K为正整数,X也是正整数,分析得出K=0(舍去),2,3,4,7,再将k值代会方程可舍去3,7(若要求两根都是正整数还可舍4)

k=2