在平面直角坐标系xOy中,有一个以F1(0,-根号3)和F2(0,根号3)为焦点,离心率为根号3/2的椭圆.设椭圆在第一象限的部分为曲线C,动点P在C上,C在点P处的切线与x,y轴的交点分别为A,B,且向量OM=向量OA+向

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 23:05:00
在平面直角坐标系xOy中,有一个以F1(0,-根号3)和F2(0,根号3)为焦点,离心率为根号3/2的椭圆.设椭圆在第一象限的部分为曲线C,动点P在C上,C在点P处的切线与x,y轴的交点分别为A,B,且向量OM=向量OA+向
xSn@~=bV)7O)zP{%4(j@$Ғ %j &]]ۜ "#b7RZtb<|qr5ovܮp+w61FX4%%qvCī{;c;b5jPEno :{ 0}aaX7b9nݫ[X5 qaPӿ a} RnֻyY!#!By!KN0!82MߟcT^NE\5EeRJCA.MUO ~pTЌn # 608v k &jR .& b`Qr>HV{]dqYXfN:#P FhAYՔ0JF)d(xAZ_hXofT-(L͂ A؟+pSh1N;3Ѽ!~SA-?;WC%ɓobQ6K`-mWAPN

在平面直角坐标系xOy中,有一个以F1(0,-根号3)和F2(0,根号3)为焦点,离心率为根号3/2的椭圆.设椭圆在第一象限的部分为曲线C,动点P在C上,C在点P处的切线与x,y轴的交点分别为A,B,且向量OM=向量OA+向
在平面直角坐标系xOy中,有一个以F1(0,-根号3)和F2(0,根号3)为焦点,离心率为根号3/2的椭圆.设椭圆在第一象限的部分为曲线C,动点P在C上,C在点P处的切线与x,y轴的交点分别为A,B,且向量OM=向量OA+向量OB,求
(1)点M的轨迹方程 (2)|向量OM|的最小值

在平面直角坐标系xOy中,有一个以F1(0,-根号3)和F2(0,根号3)为焦点,离心率为根号3/2的椭圆.设椭圆在第一象限的部分为曲线C,动点P在C上,C在点P处的切线与x,y轴的交点分别为A,B,且向量OM=向量OA+向
因为 c^2=3 ,e^2=c^2/a^2=3/a^2=3/4 ,所以 a^2=4 ,
则 b^2=a^2-c^2=1 ,
因此椭圆的方程为 y^2/4+x^2=1 , (*)
设 P(x0,y0),则椭圆在 P 处的切线方程为 y0*y/4+x0*x=1 ,
令 y=0 得 A(1/x0 ,0),令 x=0 得 B(0,4/y0),
因此 OM=OA+OB=(1/x0,4/y0).
(1)设 M(x,y),则 x=1/x0 ,y=4/y0 ,
因此 x0=1/x ,y0=4/y ,
由于 x0、y0 满足 (*),
所以代入可得 4/y^2+1/x^2=1 ,这就是 M 的轨迹方程 .
(2)由于 y0^2/4+x0^2=1 ,
因此 |OM|^2=1/x0^2+16/y0^2
=(1/x0^2+16/y0^2)(x0^2+y0^2/4)
=1+4+16(x0/y0)^2+1/4*(y0/x0)^2
>=5+2*√(16/4)=9 ,
所以,|OM| 的最小值为 3 .

在平面直角坐标系xOy中,有一个以F1(0,-√3)和F2(O,√3)为焦点,离心率为√3/2的椭圆.在平面直角坐标系xOy中,有一个以F1(0,-√3)和F2(O,√3)为焦点,离心率为√3/2的椭圆.设椭圆在第一象限的部分为曲 如图,在平面直角坐标系xoy中 如图在平面直角坐标系XOY中一次函数 在直角坐标系xOy中 在直角坐标系xOy中是什么意思.是怎么样的一个坐标系.什么样子的. 在平面直角坐标系xoy中,椭圆x2/a2+y2/b2=1(a>b>0)的左右焦点分别为F1(-c,0)F2(c,0). 在平面直角坐标系XOY中,有一个以F1(0,-根号3)和F2(0,根号3)为焦点,离心率为根号3/2的椭圆,设椭圆在第一象限的部分为曲线C,动点P在C上,C在点P处的切线与x、y轴的交点分别为A、B,且向量OM= 在平面直角坐标系xOy中,有一个以F1(0,-根号3)和F2(0,根号3)为焦点,离心率为根号3/2的椭圆.设椭圆在第一象限的部分为曲线C,动点P在C上,C在点P处的切线与x,y轴的交点分别为A,B,且向量OM=向量OA+向 在平面直角坐标系xOy中,有一个以F1(0,-√3)和F2(O,√3)为焦点,离心率为√3/2的椭圆.设椭圆在第一象限的部分为曲线C,动点P在C上,C在点P处的切线与x、y轴的交点分别为A、B,且向量OM=向量OA+向量OB, 数学圆椎曲线在平面直角坐标系xoy中,有一个以F1(O,-√3),和F2(0,√3)为焦点、离心率为?√3/2的椭圆,设椭圆在第一象限的部分为曲线C,动点P在C上,C在点P处的切线与x、y轴的交点分别为A、B, 坐标系与参数方程在以直角坐标系xOy的原点O为极点,以x轴正半轴为极轴的极坐标系(与直角坐标系xOy取相同的长度单位)中,直线l的极坐标方程为ρcosθ-ρsinθ+4=0,曲线C在平面直角坐标系xOy中 平面直角坐标系xOy是什么 在平面直角坐标系中,有一个以F1(0,-根号3)和F2(0,根号3)为焦点,离心率为二分之根号3的椭圆求大神 在平面直角坐标系XOY中,点A在X轴正半轴上,直线AB的倾斜角 在直角坐标系xoy中在平面直角坐标系xoy中,若与点A(2,2)的距离为1且与点B(m,0)的距离为3的直线恰有 在平面内直角坐标系xoy中,角 α,β(0 在平面内直角坐标系xoy中,角 α,β(0 在平面直角坐标系xOy中,已知反比例函数 满足:当x 26.(13分)如图,在平面直角坐标系 xoy中,