求数学积分∫[ln(x+sqrt(1+x^2))]^2 dx

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/04 03:23:22
求数学积分∫[ln(x+sqrt(1+x^2))]^2 dx
xT]@+463N5KV&3i6٦EhA*""]""T N.0*SsLL:qmtr{mS^ʯ,`2lE㣤RKWٴ:WmaBaOIobSr1E'HP?< bA2-73Q?|V=M3u2u*?I

求数学积分∫[ln(x+sqrt(1+x^2))]^2 dx
求数学积分∫[ln(x+sqrt(1+x^2))]^2 dx

求数学积分∫[ln(x+sqrt(1+x^2))]^2 dx
如图:

log(x+(1+x^2)^(1/2))*x-(1+x^2)^(1/2)

抱歉我是来挣分的

∫ln[x+√(x^2+1)] dx
=x*ln[x+√(x^2+1)]-∫x dln[x+√(x^2+1)],分部积分法
=xln[x+√(x^2+1)]-∫x/√(x^2+1) dx
=xln[x+√(x^2+1)]-(1/2)∫1/√(x^2+1) d(x^2+1)
=xln[x+√(x^2+1)]-(1/2)*2√(x^2+1)+C
=xln[x+√(x^2+1)]-√(x^2+1)+C

原式=xln²(x+√(1+x²))-2∫xln(x+√(1+x²))dx/√(1+x²) (应用分部积分法)
=xln²(x+√(1+x²))-2√(1+x²)ln(x+√(1+x²))+2∫dx (再次应用分部积分法)
=xln²...

全部展开

原式=xln²(x+√(1+x²))-2∫xln(x+√(1+x²))dx/√(1+x²) (应用分部积分法)
=xln²(x+√(1+x²))-2√(1+x²)ln(x+√(1+x²))+2∫dx (再次应用分部积分法)
=xln²(x+√(1+x²))-2√(1+x²)ln(x+√(1+x²))+2x+C (C是积分常数)。

收起