设 f(x)在x=0存在二阶导数,lim(x→0)[xf(x)-ln(x+1)]/x^3求f(0)f'(0)f''(0)用罗必达法则 写出详细过程
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 10:26:34
xŒjA_;WveJ\ !B{! \nmѨmcdIHAqӦX]W.|^zffB)P؝3sv?_2SVPC6ބhϞ+m"QjtTjY1rȎl%w{rIo;d'a\aKC^)=٫GV-Jˈ:4^[$/+Ov
"H.{tyϫ;QSj%o@aMNt
wټ?ֲ+9%GOv}wxp
设 f(x)在x=0存在二阶导数,lim(x→0)[xf(x)-ln(x+1)]/x^3求f(0)f'(0)f''(0)用罗必达法则 写出详细过程
设 f(x)在x=0存在二阶导数,lim(x→0)[xf(x)-ln(x+1)]/x^3求f(0)f'(0)f''(0)
用罗必达法则 写出详细过程
设 f(x)在x=0存在二阶导数,lim(x→0)[xf(x)-ln(x+1)]/x^3求f(0)f'(0)f''(0)用罗必达法则 写出详细过程
首先分母趋于0,但极限有界,所以
分子也趋于0才可能
一看的确
洛必达一次
lim [f(x)+xf'(x)-1/(1+x)]/3x^2=1/3
同理分子在x=0时应该为0
所以
f(0)+0-1=0
f(0)=1
洛必达第二次
lim [f'+f'+xf''+1/(1+x)^2]/6x=1/3
同理分子在x=0时应该为0
所以
2f'(0)+0+1=0
f'(0)=-1/2
洛必达第三次
lim [2f''+f''+xf'''-2/(1+x)^3]/6=1/3
即
3f''(0)-2=2
f''(0)=4/3
f(0)=1,f'(0)=-1/2,f''(0)=4/3
题目似乎有点问题,应该告知题目已知的那个极限的最终结果,lim(x→0)[xf(x)-ln(x+1)]/x^3=?,才能求出f(0),f'(0)及f''(0)的值。
设f(x)在x=0处存在二阶导数,且lim(x→0)(xf(x)-ln(1+x))/x^3=1/3求f(0),f'(0),f(0)用罗必达法则 做
设f(x)在x=0处存在二阶导数,且lim(x→0)(xf(x)-ln(1+x))/x^3=1/3求f(0),f'(0),f(0)
设 f(x)在x=0存在二阶导数,lim(x→0)[xf(x)-ln(x+1)]/x^3求f(0)f'(0)f''(0)用罗必达法则 写出详细过程
设f(x)在x=0处存在二阶导数,且f(0)=0,f'(0)=0,f''(0)不等于0,则lim(设f(x)在x=0处存在二阶导数,且f(0)=0,f'(0)=0,f''(0)不等于0,则lim(x趋于0)f(x)/xf'(x)得多少.答
1.设曲线y=f(x)过原点,且该曲线在点(x,f(x))处的切线斜率为-2x,则lim[f(-2x)/x^2]2.设函数f(x)在区间[0,+∞)上存在二阶导数,且f'(x)
设函数f(x)在x=0处具有二阶导数,且f(0)=0,f’(0)=1,f’’(0)=3,求极限lim(x->0)(f(x)-x)/x^2
设函数f(x)在x=0处具有二阶导数,且f(0)=0,f’(0)=1,f’’(0)=3,求极限lim(x->0)(f(x)-x)/x^2
设f(0)的二阶导数存在,且f(0)=0,g(x)=f(x)/x (x≠0时) g(x)=f(0)的导数(x=0时),则g(0)的导数为x=0时,g'(0) = lim(x→0) [g(x)-g(0)]/(x-0)=lim(x→0) [f(x)/x-f'(0)]/x=lim(x→0) [f(x)-xf'(0)]/x²=lim(x→0) [f'(x)-f'(0)]/
设f(x)具有二阶导数f''(x),证明f''(x)=lim(f(x+h)-2f(x)+f(x-h))/h^2
设f''(x)存在,求y=f(e^-x) 的二阶导数
设f(x)在【0,2】上连续,在(0,2)内具有二阶导数,且lim(X趋近1/2)=0,2∫1,1/2f(x)d(x)=f(2),试证,在(0,2)内至少存在一点δ,使得f(δ)=0
设f(x0)存在,试用导数定义求下列极限 lim(x→0)f(x)/x,其中f(0)=0,且f'(0)存在
设f(x)在x=0的邻域内具有二阶导数,且lim(x趋于0)(1+x+f(x)/x)^(1/x)=e^3(1)求f(0),f'(0)和f''(0) (2)求lim(x趋于0)(1+f(x)/x)^(1/x)
设f(x)在x=0的某一领域内具有二阶导数,且lim(x->0)[1+x+f(x)/x]^(1/x)=e^3求(1)f(0),f`(0),f``(0) (2)lim(x->0)[1+f(x)/x]^(1/x)
设f(x)在点x=o的某一邻域内具有连续的二阶导数,且lim(x->0)f(x)/x=0,证明:级数∑(n=1,∞)f(1/n)绝对收敛
设f(x)在定义域内存在导数,且lim(△x→0) f(2+△x)-f(2)/5△x等于
设f(X)的二阶导数存在,求y=f(Inx)的二阶导数.
设函数f(x)存在二阶导数,计算y=f^2(lnx)二阶导数T