f(x)在a到b上连续,且f(x)大于0,证明∫(a到b)f(x)dx∫(a到b)dy/f(y)》=(b-a)^2
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 17:34:02
xJ@W)B5M6ϡkM֓ފBO<'AADEǰ-zL\G^tr9ynO'a6seYuU-pXv27+nf~x,٨*ifu]n#^YQ'!'*,54k]q*L@6Ad!1 22
Rm;(%gL&RoLI״,΅z1Cl
f(x)在a到b上连续,且f(x)大于0,证明∫(a到b)f(x)dx∫(a到b)dy/f(y)》=(b-a)^2
f(x)在a到b上连续,且f(x)大于0,证明∫(a到b)f(x)dx∫(a到b)dy/f(y)》=(b-a)^2
f(x)在a到b上连续,且f(x)大于0,证明∫(a到b)f(x)dx∫(a到b)dy/f(y)》=(b-a)^2
f(x)在a到b上连续,且f(x)大于0,证明∫(a到b)f(x)dx∫(a到b)dy/f(y)》=(b-a)^2
f(x)在a到b上连续,f(x)
设f(x)在[a,b]上连续,且f(x)>0,证明f(x)在[a,b]上的积分乘以f(x)分之1在[a,b]上的积分大于等于(b-a)的平
设f(x)在[a,b]上连续,且a
设f(x)在[a,b]上连续,且a
设f(x)在[a,b]上连续,且a
假设函数f(x)闭在区间a,b上连续,而且f(x)大于等于0,定积分b到a f(x)dx=0,证明在闭区间a,b上恒有f(x)恒=0
设函数f(x)闭在区间a,b上连续,而且f(x)大于等于0,∫b到a f(x)dx=0,证在闭区间a,b上恒有f(x)=0
设F(x)=(f(x)-f(a))/(x-a),(x>a)其中f(x)在[a,+∞)上连续,f''(x)在(a,+∞)内存在且大于0,求证F(x)在(a,+∞)内单调递增.
设f(x)在〔a,b〕上连续,且f(x)>0,证明:f(x)在a到b上的积分乘1/f(x)在a到b的积分大于(b-a)∧2(用定积分的方法做)
设函数f(x)在[a,b]上连续,在(a,b)内可导且f'(x)
假设f(x)在区间[a,b]上连续 在(a,b)内可导 且f'(x)
设函数f(x)在[a,b]上连续,在(a,b)上可导且f'(x)
如果f'(x)在[a,b]上连续,在(a,b)内可导且f'(a)≥0,f''(x)>0,证明f(b)>f(a)
设函数f(x)在[a,b]上连续,在(a,b)可导,且f(a)*f(b)>0,f(a)*f((a+b)/2)
设f(x)在〔a,b〕上连续且f(x)>0,F(x)=∫f(t)dt(上限x下限a)+∫dt/f(t)(上限x下限b).证明:1.F(x)导数大于等于22.F(x)=0在(a,b)内有且仅有一个根.
若f(x)在[a,b]上连续,且对任何[a,b]上连续函数g(x),恒有∫(a到b)f(x)g(x)=0,求证f(x)恒等于0.
设函数f(x),g(x)在区间[a,b]上连续,且f(a)