如果f'(x)在[a,b]上连续,在(a,b)内可导且f'(a)≥0,f''(x)>0,证明f(b)>f(a)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 19:28:43
xJP_J9SIѷsmMEqݸpQSHETn柙>f2_Ӊkw.z/Cu߯?W:^ ۛqV>'*z*jv|~p5[el[''zT٨Fr ey㢊Yr#pwÞZa$VC$!%c@jB$&
1ƨp)k)Ǣң؍X([o
1TX8Yc&$R_
0
如果f'(x)在[a,b]上连续,在(a,b)内可导且f'(a)≥0,f''(x)>0,证明f(b)>f(a)
如果f'(x)在[a,b]上连续,在(a,b)内可导且f'(a)≥0,f''(x)>0,证明f(b)>f(a)
如果f'(x)在[a,b]上连续,在(a,b)内可导且f'(a)≥0,f''(x)>0,证明f(b)>f(a)
如果f(x)在[a,b]上一致连续,证明f(x)在[a,b]上有界
如果f(x)在[a,b]上一致连续,证明f(x)在[a,b]上有界
f(x)在a到b上连续,f(x)
如果f'(x)在[a,b]上连续,在(a,b)内可导且f'(a)≥0,f''(x)>0,证明f(b)>f(a)
设f(x)在[a,b]上连续,且a
设函数f(x)在[a,b]上连续,a
设f(x)在[a,b]上连续,且a
f(x)在[a,b]上连续a
若函数f(x)在[a,b]上连续,a
若f(x)在[a,b]上连续,a
f(x)在[a,b]上连续,a
设f(x)在[a,b]上连续,且a
设f(x)在[a,b]上连续,a
设函数f(x)在[a,b]上连续,a
若函数f(x)在[a,b]上连续,a
若函数f(x)在[a,b]上连续,a
设函数f(x)在区间[a,b]上连续,在区间(a,b)内有二阶导数,如果f(a)=f(b)且存在c设函数f(x)在区间[a,b]上连续,在区间(a,b)内有二阶导数,如果f(a)=f(b)且存在c属于(a,b)使得f(c)>f(a)证明在(a,b)内至
如果f在(a,b)上一致连续,证明f在(a,b)上有界