ab/a+b=1/3,bc/b+c=1/4,ac/a+c=1/5.1/a+1/b+1/c=?
来源:学生作业帮助网 编辑:作业帮 时间:2024/12/01 11:19:39
xRN@~/qWjY"1-@_H/KMѴI *y>͎saƬk$o%7QX>=mMl]
CA,];;EZssZ
q Upm>!'ŋ&l[n%" A6ũЅ@7ӉDw"@7T+X.sMgEImĵy?&X}CY=UڏXVg?u;
ab/a+b=1/3,bc/b+c=1/4,ac/a+c=1/5.1/a+1/b+1/c=?
ab/a+b=1/3,bc/b+c=1/4,ac/a+c=1/5.1/a+1/b+1/c=?
ab/a+b=1/3,bc/b+c=1/4,ac/a+c=1/5.1/a+1/b+1/c=?
ab/a+b=1/3
倒过来就是
(a+b)/ab=3,也就是1/A+1/B=3
同理1/B+1/C=4 1/A+1/C=5
全部加起来1/A+1/B+1/B+1/C+1/A+1/C=3+4+5=12
所以1/a+1/b+1/c=6
题目错了吧
由题可知
a+b∕ab=3 b+c∕bc=4 a+c∕ac=5
所以 1∕a+1∕b=3 1∕b+1∕c=4 1∕a+1∕c=5
所以 1∕a+1∕b+1∕c=6
原题是ab/a+b=1/3,bc/b+c=1/4,ac/a+c=1/5.1/a+1/b+1/c+1
a+b/ab=3 b+c/bc=4 a+c/ac=5
=a/ab + b/ab b/bc + c/bc a/ac + c/ac
=1/b + 1/a=3 1/c + 1/b=4 1/c +1/a=5
然后列三元一次方程
解得1/a=2 1/b=1 1/c=3
1+2+3=6
也可以三式相加 再除以二得6
因式分解abc+ab+bc+ca+a+b+c+1=
已知a+b+c=1求证ab+bc+ca
已知a+b+c=1求证ab+ac+bc
a^3+b^3+c^3-3ab=(a+b+c)(a^2+b^2+c^2-ab-ac-bc)=1/2(a+b+c)[(a-b)^2+(a-c)^2+(b-c)^2]的证明过程
a/ |a|+ |b|/b+c/ |c|=1,求|abc|/abc /(bc/ |ab|*ac/ |bc|*ab/ |ac|)的值
正数 a,b,c满足ab+a+b=bc+b+c=ca+c+a=3,求(a+1)(b+1)(c+1)的值
正整数a,b,c满足ab+a+b=bc+b+c=ac+a+c=3,求(a+1)(b+1)(c+1)的值
若正数A B C,满足式子AB+B+A=BC+B+C=CA+C+A=3,求(A+1)(B+1)(C+1)
已知a-b=3 b-c=-1 求a2+b2+c2-ab-bc-ac
abc=1 化简(ab/ab+b+1 )+(bc/bc+c+1)+(ac/ac+a+1)
高中不等式.(已知a+b+c=1) ab/c + bc/a + ca/b 最小值
a,b,c都是正数,ab+bc+ca=1则a+b+c
a,b,c属于R+ ,a+b+c=1 证明bc/a +ac/b +ab/c>=1
已知a,b,c∈R+,a+b+c=1,求证bc/a+ac/b+ab/c>=1
已知a+b=3a+c=1求a²+b²+c²+ab+ac-bc
a+b+c=1 求 c/ab+a/bc+b/ac最小值a b c为正
a,b,c属于R+,a+b+c=1,求bc/a+ac/b+ab/c最小值
已知a-b=b-c=3/5 a平方+b平方=1 则ab+ac+bc=?