若m,n为有理数,且2 m^2-2mn+n^2+4m+4=0,则m^2n+mn^2=

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/24 10:56:32
若m,n为有理数,且2 m^2-2mn+n^2+4m+4=0,则m^2n+mn^2=
x){ѽ4W'Ɏ]t>l';)iij< $铯YΆB)Kh kjx`YMn&PL#WHCE|YDŽ竻jy6wۀ.{gX  zd\<[]#̅`mnЎ

若m,n为有理数,且2 m^2-2mn+n^2+4m+4=0,则m^2n+mn^2=
若m,n为有理数,且2 m^2-2mn+n^2+4m+4=0,则m^2n+mn^2=

若m,n为有理数,且2 m^2-2mn+n^2+4m+4=0,则m^2n+mn^2=
2 m^2-2mn+n^2+4m+4=0
(m^2-2mn+n^2)+(m^2+4m+4)=0
(m-n)^2+(m+2)^2=0
等式成立的条件为:
m-n=0
m+2=0
所以m=n=-2
m^2n+mn^2
=mn(m+n)
=4*(-4)
=-16