已知sin(x+π/6)sin(x-π/6)=11/20,则tanx的值为?

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/02 23:58:50
已知sin(x+π/6)sin(x-π/6)=11/20,则tanx的值为?
xSn@(RXI< D&aV jtQZ)*M)PĉQ)xsϹΝFLξoCS?@2X $`-(o' k[!8ik:"5@̼NUe8B(,o2JR q'$ ˂T ;~=1#R}Sײ<ȏhgto%o.sX/ُ0$e˥p&v~hTyw.x^;: ;B{\q\M\M˃x.B2`XTSB1LXuMOLLÀhY|Sƒ=$p$U7 d ۪ep\a+!p. $ģi<;ܟ-p_ >x8Waz:l:

已知sin(x+π/6)sin(x-π/6)=11/20,则tanx的值为?
已知sin(x+π/6)sin(x-π/6)=11/20,则tanx的值为?

已知sin(x+π/6)sin(x-π/6)=11/20,则tanx的值为?
sin(x+π/6)sin(x-π/6)=[(根号3/2)sinx+1/2cosx][(根号3/2)sinx-1/2cosx]
=3/4(sinx)^2-1/4(cosx)^2=11/20.
故3(sinx)^2-(cosx)^2=11/5
(sinx)^2+(cosx)^2=1
联立方程组,可得(sinx)^2=4/5,(cosx)^2=1/5,tanx=根号(0.8/0.2)=2,


sin(x+π/6)sin(x-π/6)
=(sinxcosπ/6+cosxsinπ/6)(sinxcosπ/6-cosxsinπ/6)
=(sinxcosπ/6)^2-(cosxsinπ/6)^2
=3/4sin^2x-1/4cos^2x
=1/4(3sin^2x-cos^2x)
=1/4(3sin^2x-1+sin^2x)
=1/4(4sin^2x-1)=11/20
sin^2x=4/5
cos^2x=1-sin^2x=1/5
tan^2x=4
tanx=±2

如图

2,sinx=2√5/5 cosx=√5/5

用公式:sin(x+y)sin(x-y)=(sinx)^2-(siny)^2,可以化简运算。