已知数列an的前n项和sn满足2(sn)^2=2ansn-an (n大于等于2),且a1=2,求an和sn

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/03 06:40:42
已知数列an的前n项和sn满足2(sn)^2=2ansn-an (n大于等于2),且a1=2,求an和sn
xRj@~aɶ\_"`a4&ڃRZO?BH6'_FaooSkx xiփD/fG\0D l/l~[flv'|Hy-@skWi^;z![8 Tg]2p+#\xMrܿoY11O\1OHm>9s}Sdr!O[b]g,ׯ}4TNh+zǑ2>ġҟFMk+fNCmmC%%Ue-$ ";b§+;?s aYi3FMuH

已知数列an的前n项和sn满足2(sn)^2=2ansn-an (n大于等于2),且a1=2,求an和sn
已知数列an的前n项和sn满足2(sn)^2=2ansn-an (n大于等于2),且a1=2,求an和sn

已知数列an的前n项和sn满足2(sn)^2=2ansn-an (n大于等于2),且a1=2,求an和sn
2Sn^2=2anSn-an
an=Sn-S(n-1)
2Sn^2=2[Sn-S(n-1)]Sn-Sn+S(n-1)
=2Sn^2-2SnS(n-1)-Sn+S(n-1)
即2SnS(n-1)+Sn=S(n-1)
2SnS(n-1)+Sn=S(n-1) Sn=x,S(n-1)=y
2xy+x=y x=y/(2y+1)
1/x=2+1/y,即1/Sn=2+1/S(n-1)
所以1/Sn是以1/2为首项,2为差的等差数列
所以1/Sn=1/2+2(n-1)=(4n-3)/2 Sn=2/(4n-3)
1/Sn=2+1/S(n-1)=2+1/[Sn-an]
(4n-3)/2=2+1/[2/(4n-3)-an](移项,倒数,化简)
an=-8/[(4n-7)(4n-3)] n≥2
即an=-8/[(4n-7)(4n-3)] n≥2,Sn=2/(4n-3)

已知数列an的前n项和sn满足sn=n的平方+2n-1求an 已知数列{an}的前n项和为sn,且满足sn=n 已知数列an的前n项和sn与通项an满足a1=2,sn+1sn=an+1,求sn 已知数列{an}的前n项和sn满足sn=an^2+bn,求证{an}是等差数列 数列an的前n项和Sn满足:Sn=2n-an 求通项公式 已知数列的前n项和sn满足2sn-3an+2n=0(n 已知数列{an}的前n项和为Sn,且满足an+2Sn*Sn-1=0,a1=1/2.求证:{1/Sn}是等差数列 已知数列{an}的前n项和Sn满足Sn=2/3an-1/3,且1 (1)已知数列an的前n项和为sn满足sn=an²+bn,求证an是等差数列(2)已知等差数列an的前n项和为sn,求证数列sn/n也成等差数列 已知数列An的前n项和Sn满足An+2Sn*Sn-1=0,n大于等于2,A1=1/2,求An. 已知数列{an}满足an=2n/3^n,求此数列的前n项和sn 已知数列{an}的前n项和为Sn,an+Sn=2,(n 已知数列{an}的前n项和为Sn,且满足Sn=2an-1(n属于正整数),求数列{an}的通项公式an 已知数列(an)的前n项和为Sn,满足an+Sn=2n,证明数列(an-2)为等比数列并求出an 已知数列{an}a1=2前n项和为Sn 且满足Sn Sn-1=3an 求数列{an}的通项公式an已知数列{an}a1=2前n项和为Sn 且满足Sn +Sn-1=3an 求数列{an}的通项公式an 已知数列{An}的前N项和为Sn ,a1=-2分之一,满足SN+SN分之一=AN-2 n大于等于2,求S5 已知数列{an}的前n项和为Sn,且满足Sn=2an-1,n为正整数,求数列{an}的通项公式anRT , 已知数列{an}的前n项和为Sn,满足Sn=2an-2n,1.求数列an的通向公式2.