关于定积分的基础题凑合看看%…… F'(x)=f(x),则 d[∫(0-1)f(3x)]=1/3[F(3)-F(0)]好像是这个答案 求f(3x)的原函数嘛,我知道不是F(1)-F(0)那么简单的,只是也没有搞懂1/3的具体怎么做的~另外,我不是指用

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 21:30:42
关于定积分的基础题凑合看看%…… F'(x)=f(x),则 d[∫(0-1)f(3x)]=1/3[F(3)-F(0)]好像是这个答案 求f(3x)的原函数嘛,我知道不是F(1)-F(0)那么简单的,只是也没有搞懂1/3的具体怎么做的~另外,我不是指用
xJ@_1H-&=%E&E/=I֤j?FjU[Ei`[-KٙmO~"xeawߎCpS!2x;P۠qƵnfK kmj2̔>mǢfL}Ѧiap:WYšvZE|>-(j}:9zh1e3Jo\ƀY5

关于定积分的基础题凑合看看%…… F'(x)=f(x),则 d[∫(0-1)f(3x)]=1/3[F(3)-F(0)]好像是这个答案 求f(3x)的原函数嘛,我知道不是F(1)-F(0)那么简单的,只是也没有搞懂1/3的具体怎么做的~另外,我不是指用
关于定积分的基础题
凑合看看%……
F'(x)=f(x),则 d[∫(0-1)f(3x)]=1/3[F(3)-F(0)]
好像是这个答案
求f(3x)的原函数嘛,我知道不是F(1)-F(0)那么简单的,只是也没有搞懂1/3的具体怎么做的~另外,我不是指用换元法来做这题……如何分析这个1/3就对了…………

关于定积分的基础题凑合看看%…… F'(x)=f(x),则 d[∫(0-1)f(3x)]=1/3[F(3)-F(0)]好像是这个答案 求f(3x)的原函数嘛,我知道不是F(1)-F(0)那么简单的,只是也没有搞懂1/3的具体怎么做的~另外,我不是指用
f(3x)的原函数是(1/3)F(3x)啊……
至于1/3是怎么来的,因为F(3x)可以看成复合函数F(g(x)),g(x)=3x,所以由复合函数求导法则知F(3x)的导数等于F'(g(x))*g'(x)=F'(3x)*(3x)'=3F'(3x)=3f(3x),所以(1/3)F(3x)的导数就等于f(3x)了