计算I=∫∫4xzdydz-2yzdzdx+(1-z^2)dxdy,其中积分区域∑是由平面曲线{z=e^y;x=0 ,0≤y≤a 绕z轴旋转一周所得旋转面的下侧.I=πa^2(e^(2a)-1)-πae^(2a)+(π/2)e^(2a)-(π/2) 我解出来的答案为πa^2(e^(2a)-1)

来源:学生作业帮助网 编辑:作业帮 时间:2024/07/09 00:21:23
计算I=∫∫4xzdydz-2yzdzdx+(1-z^2)dxdy,其中积分区域∑是由平面曲线{z=e^y;x=0 ,0≤y≤a 绕z轴旋转一周所得旋转面的下侧.I=πa^2(e^(2a)-1)-πae^(2a)+(π/2)e^(2a)-(π/2) 我解出来的答案为πa^2(e^(2a)-1)
x){nu=mu"ʔ*]ʪ m Cݪ8#͔J۞X|mO{v=?Qg3?/.z6{]]eWi]akcsI%'*<=-ϦwػɎW=ټ96yvWc

计算I=∫∫4xzdydz-2yzdzdx+(1-z^2)dxdy,其中积分区域∑是由平面曲线{z=e^y;x=0 ,0≤y≤a 绕z轴旋转一周所得旋转面的下侧.I=πa^2(e^(2a)-1)-πae^(2a)+(π/2)e^(2a)-(π/2) 我解出来的答案为πa^2(e^(2a)-1)
计算I=∫∫4xzdydz-2yzdzdx+(1-z^2)dxdy,其中积分区域∑是由平面曲线{z=e^y;x=0 ,0≤y≤a 绕z轴旋转一周所得旋转面的下侧.
I=πa^2(e^(2a)-1)-πae^(2a)+(π/2)e^(2a)-(π/2)
我解出来的答案为πa^2(e^(2a)-1)

计算I=∫∫4xzdydz-2yzdzdx+(1-z^2)dxdy,其中积分区域∑是由平面曲线{z=e^y;x=0 ,0≤y≤a 绕z轴旋转一周所得旋转面的下侧.I=πa^2(e^(2a)-1)-πae^(2a)+(π/2)e^(2a)-(π/2) 我解出来的答案为πa^2(e^(2a)-1)
你是对的,我算出来也是这结果