函数f(x)=sinx/根号(5+4cosx) [0

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/26 10:32:26
函数f(x)=sinx/根号(5+4cosx) [0
xSN@yldΏDFj"%@JSUms|Bym/:kEm̙3gvZQwXcMiht?RZl4-WoShNv_ύ{;ʛ :lQO8Td;Ñ%~<@3#^/oUk\N ߏ[xHՑ fX{>@쬀dZbVV%pk̀eݏ]LpўۃȃzS\AH~gGe*' * zi`^ܜ(KqsDdkVn`%ʐDp4ѵ*gsmѨܨ+

函数f(x)=sinx/根号(5+4cosx) [0
函数f(x)=sinx/根号(5+4cosx) [0<=x<=2π]的值域是

函数f(x)=sinx/根号(5+4cosx) [0
首先这是一个连续可导函数,通过求出边界值以及极值,可求得值域
求导
f'(x)
= cosx/根号(5+4cosx) + 2(sinx)^2/(5+4cosx)^(3/2)
= [cosx (5+4cosx) + 2(sinx)^2]/(5+4cosx)^(3/2)
= [2(cosx)^2 + 5cosx + 2]/(5+4cosx)^(3/2)
= (2cosx + 1)(cosx + 2)/(5+4cosx)^(3/2)
所以 当 2cosx + 1 = 0 即 cosx = -1/2 时
f'(x) = 0
cosx = -1/2 对应
x = 120 度 sinx = √3 /2
以及
x = 240 度 sinx = -√3/2
在 x = 120 度时
f(x) = (√3 /2)/√(5 - 4 *1/2) = 1/2
在 x = 240度时
f(x) = -1/2
而在边界处
f(0) = f(360度) = 0
在 [0<=x<=2π] 上, f(x) 是连续函数.结合边界取值以及极值情况可以知道
f(x) 在 [0, 120] 单调递增, 在 [120, 240] 单调递减,在[240,360]单调递增.
综上所述, 值域为
[-1/2, 1/2]