1/求一次函数f(x),使f[f(x)]=9x+1.2/函数f(x)=ax2+bx+c(a>0),f(m)>0,f(-b/2a)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 17:29:21
1/求一次函数f(x),使f[f(x)]=9x+1.2/函数f(x)=ax2+bx+c(a>0),f(m)>0,f(-b/2a)
xS_O@*pMݝo~3RҢ7*Qݜ1uSn#7s }6u=^Wե'>ųJJ &()\(e-#0#d#qZrt ;3pc}G8lPM>T8513?v9P|<'T>JD^-#2i=:\9Vʖ6s;yINANEZ:U)yQPpCrU_45B?RMAd~Gz)|IjNFt'i"80p7/U]n,f{m'~kj,:i0:>~WBD, V`g Z^ 1BI (UjC#M8_Za` cQۤRS`!?DPZuְnzcF?I8߱ 4Pe+[P'Ǔi}ގH'=lwQ[>j`s8k[;jW!bY&RKfB԰fMT'.~yvҰDvZӱ]F {1|㐝?rb[8T=)ԩۆݶ$?

1/求一次函数f(x),使f[f(x)]=9x+1.2/函数f(x)=ax2+bx+c(a>0),f(m)>0,f(-b/2a)
1/求一次函数f(x),使f[f(x)]=9x+1.
2/函数f(x)=ax2+bx+c(a>0),f(m)>0,f(-b/2a)

1/求一次函数f(x),使f[f(x)]=9x+1.2/函数f(x)=ax2+bx+c(a>0),f(m)>0,f(-b/2a)
因f(x)为一次函数,设y=f(x)=kx+b,然后令x=y=f(x)代入则有
f(f(x))=f(y)=ky+b=k(kx+b)+b=k^2*x+kb+b=9x+1
可得k^2=9,kb+b=1
解得k1=3,b1=1/4;k2=-3,b=-1/2
所以f(x)=3x+1/4或者f(x)=-3x-1/2
2.因为mm,
又因为
n+m>-b/a,
n-(-b/2a)>-b/2a-m
从这儿可以得出
x=n到对称轴x=-b/2a的距离大于x=-b/2a到x=m的距离,由于二次函数图象开口向上,且二次函数关于轴x=-b/2a对称,又在x=m处f(m)>0,在对称轴x=-b/2a上f(-b/2a)f(m)>0,所以可以判定函数在[m,n]区间内于x轴相交两次,
所以当f(x)=0时,有两个不相等的实根,分别在区间[m,-b/2a]、[-b/2a,n]内取得.

1题 f(x)= 3x+1/4 or -3x-1/2
2题 你大概画一下图应该就有个眉目了。。。
a>0,开口向上,对称轴-b/2a处小于0,m处大于0,从m到-b/2a间有了与0轴的交点即第一根;n那边应该类似判断(但我不会做)