跪求极限Y=lim (xy+1)/x^4+y^4,当(x,y)→(0,0),

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 18:06:44
跪求极限Y=lim (xy+1)/x^4+y^4,当(x,y)→(0,0),
x){}ճM59!6'3WARPS"D2DtTTmmcd$S]ΆbiK(( @iM>lN=4@ ik2)ty@pm K g b ֌3Be $&u?l+?]eX~Oȁ@ lF]];C"Rf',

跪求极限Y=lim (xy+1)/x^4+y^4,当(x,y)→(0,0),
跪求极限Y=lim (xy+1)/x^4+y^4,当(x,y)→(0,0),

跪求极限Y=lim (xy+1)/x^4+y^4,当(x,y)→(0,0),
Y=lim (xy+1)/x^4+y^4
=lim (xy+1)/lim (x^4+y^4)
又(x,y)→(0,0),则有:
lim (xy+1)=1,(x^4+y^4)∈(0,1)
Y=lim (xy+1)/x^4+y^4
=lim (xy+1)/lim (x^4+y^4)
=∞(当(x,y)→(0,0)时)

=lim(xy+1)/x^4+y^4
<=lim(xy+1)/2(xy)^2
<=lim1/2xy+lim1/2(xy)^
趋于无穷大

当(x,y)→(0,0),
xy+1 -->1
x^4+y^4 -->0
Y=lim (xy+1)/x^4+y^4 =无穷大