已知,cos(α-β/2)=-3/5,sin(α/2-β)=12/13,且α∈(π/2,π),β∈(0,π/2),求cos(α+β/2)的值.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 00:40:44
已知,cos(α-β/2)=-3/5,sin(α/2-β)=12/13,且α∈(π/2,π),β∈(0,π/2),求cos(α+β/2)的值.
x){}Ku5m=IHVXT83(oӴ5474ycʹ::47o9 5 h<1GlY-O$;g';va1`:^ 1bld c腸ȉԅklqȮւpOA[! }gt}P-O׿h{NT@յ4dG}6u Ov=_ $ u տ}ڷw3vm @i#E$

已知,cos(α-β/2)=-3/5,sin(α/2-β)=12/13,且α∈(π/2,π),β∈(0,π/2),求cos(α+β/2)的值.
已知,cos(α-β/2)=-3/5,sin(α/2-β)=12/13,且α∈(π/2,π),β∈(0,π/2),求cos(α+β/2)的值.

已知,cos(α-β/2)=-3/5,sin(α/2-β)=12/13,且α∈(π/2,π),β∈(0,π/2),求cos(α+β/2)的值.
因为sin(α/2-β)=12/13,α∈(π/2,π),β∈(0,π/2)
所以cos(α/2-β)=5/13,
又因为cos(α-β/2)=-3/5
所以cos(α+β/2)=cos[(α-β/2)-(α/2-β)]=cos(α/2-β)*cos(α-β/2)+sin(α/2-β)*sin(α-β/2)=5/13 * -3/5 + 12/13 * (4/5或-4/5,因为α-β/2可能π)
所以cos(α+β/2)=-9/13或15/13
又因为cos函数小于等于1,所以15/13舍去
即cos(α+β/2)=-9/13