四棱锥P-ABCD中,角DAB=角ABC=90度PA垂直平面ABCD,点E是PA中点AB=BC=1,AD=2求证平面PCD垂直平面PAC
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/25 18:28:49
x){:{_NYdZ'8:)]kz>{ӝ_]RiZlbCG[g^o
pvAlT?m5⌴4Lm@$XQGjLLm
m
9MG
&k)ta
\>Tǁ8T\g
-06 -7}
四棱锥P-ABCD中,角DAB=角ABC=90度PA垂直平面ABCD,点E是PA中点AB=BC=1,AD=2求证平面PCD垂直平面PAC
四棱锥P-ABCD中,角DAB=角ABC=90度PA垂直平面ABCD,点E是PA中点AB=BC=1,AD=2求证平面PCD垂直平面PAC
四棱锥P-ABCD中,角DAB=角ABC=90度PA垂直平面ABCD,点E是PA中点AB=BC=1,AD=2求证平面PCD垂直平面PAC
AC=(AB^2+BC^2)^0.5=2^0.5
∵∠BAC=45°
∴∠CAD=45°
∵AD=2
∴CD⊥AC
∵PA垂直平面ABCD
∴PA⊥CD
∴CD⊥平面PAC
∴PDC⊥PAC
∵PA垂直平面ABCD
∴PA⊥CD
∴CD⊥平面PAC
∴PDC⊥PAC
在如图所示的四棱锥P-ABCD中,已知PA⊥平面ABCD,AB//DC,角DAB=90°
四棱锥P-ABCD中,底面ABCD为菱形,PD=AD,角DAB=60度,PD⊥底面ABCD,求证AC⊥PB
四棱锥P-ABCD中,角DAB=角ABC=90度PA垂直平面ABCD,点E是PA中点AB=BC=1,AD=2求证平面PCD垂直平面PAC
四棱锥P-ABCD中,PA垂直于面ABCD,AB=4,BC=3,AD=5,角ABC=角DAB=90°,E为CD中点,证明CD垂直平面PAE
如图所示在四棱锥P-ABCD中 PA垂直平面ABCD,AB=4,BC=3 AD=5 ∠DAB=∠ABC=90.E是CD的中点证明CD垂直平面PAE若直线PB与平面PAE所构成的角和与平面ABCD所构成的角相等 求四棱锥P-ABCD的体积
四棱锥P-ABCD中,底面ABCD为平行四边形,角DAB=60度,AB=2AD ,PD垂直底面ABCD.(1)证明PA垂直BD;(2)若P...四棱锥P-ABCD中,底面ABCD为平行四边形,角DAB=60度,AB=2AD ,PD垂直底面ABCD.(1)证明PA垂直BD;(2)若PD=AD,求二面角
四棱锥P-ABCD中PA⊥平面ABCDAB=4 BC=3 AD=5 ∠DAB=∠ABC=90°,E是CD中点.若直线PB与平面PAE所成角和PB与平面ABCD所成角相等,求四棱锥P-ABCD体积
四棱锥P-ABCD中,底面ABCD是角DAB=60度的菱形,侧面PAD为正三角形,其所在平面垂直于底面ABCD.(1)AD...四棱锥P-ABCD中,底面ABCD是角DAB=60度的菱形,侧面PAD为正三角形,其所在平面垂直于底面ABCD.(1)AD
四棱锥P-ABCD中,PA垂直于面ABCD,AB=4,BC=3,AD=5,角ABC=角DAB=90°,E为CD中点,若PB与面PAE所成角和PB与面ABCD所成角想等,求四棱锥体积 两个线面角怎么找啊
如图,已知四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是直角梯形,∠DAB=∠ABC数学如图,已知四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是直角梯形,∠DAB=∠ABC=90°,E是线段PC上一点,PC⊥平面BDE.(Ⅰ)求证:BD⊥
如图5,四棱锥P-ABCD中,底面ABCD为平行四边形,角DAB=60°,AB=2AD=2,PD=根号3,PD⊥底面ABCD.求四棱锥P-ABCD的面积.
四棱锥P-ABCD中,底面ABCD为平行四边形,角DAB=60度,AB=2AD ,PD垂直底面ABCD.(1)证明PA垂直BD;(2)若P...
如图,在四棱锥P--ABCD中,PA垂直平面ABCD,AB=4,BC=3,AD=5,角DAB=角ABC=90度,E是CD的中点.若直线PB与平面PAE所成的角和PB与平面ABCD所成的角相等,求四棱锥P--ABCD的体积只求红圈步骤怎么来的 BF=AB^2/BG
四棱锥P—ABCD中,底面ABCD是直角梯形,AB//CD,角DAB=60度,AB=AD=2CD=2,PAD垂直底面ABCD,且三角形PAD为等
如图,四棱锥p-ABCD中,底面ABCD为平行四边形,角DAB=60度,AB=2AD,PD垂直于底面ABCD.证明PA垂直于BD
四棱锥P-ABCD中PA⊥平面ABCDAB=4 BC=3 AD=5 ∠DAB=∠ABC=90°求E是CD中点嗯 E是CD中点 求证1 CD垂直平面PAE 2 若直线PB与平面PAE所成角和PB与平面ABCD所成角相等求四棱锥P-ABCD体积
已知四棱锥P-ABCD的底面是棱形,角DAB=60度,PD垂直平面ABCD,PD=AD.(1)证明:平面PAC垂直于平面PDB
已知四棱锥P-ABCD中∠DAB=∠ABC=90°,AB=BC=1,PA=AD=2,PA⊥平面ABCD(1)求PC与平面PAB所成角的正切值(2)求证:平面PAC⊥平面PCD