设椭圆x2/a2+y2/b2=1(a>b>0)上任意一点p,它与两个焦点的连线互相垂直,求离心率的取值范围

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/26 14:42:03
设椭圆x2/a2+y2/b2=1(a>b>0)上任意一点p,它与两个焦点的连线互相垂直,求离心率的取值范围
xRnQ~a4QYt1k^afBFw#PEh* @X Gs pt݅}zПg@1A9P,{n; >UEZ,sNsEs4> 210CO}

设椭圆x2/a2+y2/b2=1(a>b>0)上任意一点p,它与两个焦点的连线互相垂直,求离心率的取值范围
设椭圆x2/a2+y2/b2=1(a>b>0)上任意一点p,它与两个焦点的连线互相垂直,求离心率的取值范围

设椭圆x2/a2+y2/b2=1(a>b>0)上任意一点p,它与两个焦点的连线互相垂直,求离心率的取值范围
记住一个知识点,本题可轻松搞定.
知识点:短轴端点与两焦点的视角是椭圆上任意一点与两焦点的视角的最大值.即∠F1BF2最大.其中B是短轴的一个端点,F1、F2为焦点.
本题中,由于存在椭圆上的点P使∠F1PF2=90°,所以∠F1BF2≥90°,从而易知,c≥b
a²=b²+c²≤2c²,c²/a²≥1/2,所以离心率的取值范围是√2/2≤e

令PF1=m,PF2=n
F1F2=2c
由椭圆定义,m+n=2a
所以m²+n²+2mn=4a²
勾股定理
m²+n²=4c²
所以4c²+2mn=4a²
2mn=4a²-4c²
因为m²+n²>=2mn
...

全部展开

令PF1=m,PF2=n
F1F2=2c
由椭圆定义,m+n=2a
所以m²+n²+2mn=4a²
勾股定理
m²+n²=4c²
所以4c²+2mn=4a²
2mn=4a²-4c²
因为m²+n²>=2mn
所以4c²>=4a²-4c²
2c²>=a²
c²/a²>=1/2
e=c/a>=√2/2
椭圆则e<1
所以√2/2<=e<1

收起

已知椭圆C1:x2 a2 + y2 b2 =1(a>b>0)椭圆C2 设F为椭圆x2/a2+y2/b2=1(a>b>0)的个焦点,A、B、C为椭圆上三点,若向量FA、FB、FC的 设椭圆x2/a2+y2/b2=1(a>b>0)的离心率为e=1/2,右焦点F(c,0),方程a 设AB分别为椭圆x2/a2+y2/b2=1(a>b>0)的左右顶点,椭圆长半轴的长等于焦距,且a2/c=4,求椭圆方程. 设椭圆x2/a2+y2/b2=1(a>b>0)与双曲线x2/3-y2/1=1有相同的焦点F1(-c,0).设椭圆x2/a2+y2/b2=1(a>b>0)与双曲线x2/3-y2/1=1有相同的焦点F1(-c,0)F2(c,0)(c>0),P为椭圆上一点,三角形PF1F2的最大面积等于2根号2, 如果一个椭圆和椭圆x2/a2+y2/b2=1(a>0,b>0)共焦点,那么它的方程可设为x2/m+y2/[m-(a2-b2)]=1(m>a2-b2)如果焦点在Y轴,所设的共焦点椭圆方程,是不是只需要把上面的x2和y2换个位置?②,这个结论是如何推导 设P(x,y)为椭圆X2/a2+Y2/y2=1(a>b>0)上的任一点.F1,F2是它的左右焦点.求证|PF1|·|PF2|∈〔b2,a2〕 设A是椭圆x2/a2+y2/b2=1(a大于b大于0)长轴上的一个顶点,若椭圆存在点P,使AP垂直OP,求椭圆离心率e的取值范围. 如图,求椭圆x2/a2+y2/b2=1(a>b>0)内接正方形ABCD的面积 设F1,F2为椭圆x2/a2+y2/b2=1(a>b>0)的焦点,M为椭圆上一点,MF1垂直于x轴,且∠F1MF2=60°,则椭圆的离心率为 已知椭圆C的方程为x2/a2+y2/b2=1(a>b>0) 双曲线x2/a2-y2/b2=1的两条渐近线为l1,l2,过椭圆C的右焦点作F作直已知椭圆C的方程为x2/a2+y2/b2=1(a>b>0)双曲线x2/a2-y2/b2=1的两条渐近线为l1,l2,过椭圆C的右焦点作F作 设设椭圆x2/a2+y2/b2=1(a>b>0)的左焦点为F,上顶点为A,过点A与AF垂直的直线分别交椭圆和x轴正半轴与P Q设椭圆x2/a2+y2/b2=1(a>b>0)的左焦点为F,上顶点为A,过点A与AF垂直的直线分别交椭圆和x轴正半轴与P, 设椭圆C:x2/a2+y2/b2=1(a>b>0)的长轴两端点分别为A、A',若椭圆上存在一点M使角AMA'=120度,试求离心率的范围. 设椭圆x2/a2+y2/b2=1(a>b>0)的左焦点为F,离心率为根号3/3,设椭圆x2/a2+y2/b2=1(a>b>0)的左焦点为F,离心率为根号3/3,过点F且与x轴垂直的直线被椭圆截得的线段长为4倍根号3/3.(1)求椭圆的方程.(2) 设A 设椭圆C:x2/a2+y2/b2=1(a>b>0)的长轴两端点分别为A、A',若椭圆上存在一点M使角AMA'=120度,试求离心率的...设椭圆C:x2/a2+y2/b2=1(a>b>0)的长轴两端点分别为A、A',若椭圆上存在一点M使角AMA'=120度,试求离心 设椭圆:C:x2/a2+y2/b2=1(a大于b大于0)的左焦点为F,上顶点为A …… 垂直的直线分别交椭圆C设椭圆:C:x2/a2+y2/b2=1(a大于b大于0)的左焦点为F,上顶点为A …… 垂直的直线分别交椭圆C与x轴正半轴于点P 设p为椭圆x2/a2+y2/b2=1(a>b>0)上一点,两焦点分别为F1.F2.如果∠pF1F2=75°,∠pF2F1=15°,则椭圆离心率为 设F1为椭圆X2/a2+Y2/b2=1的左焦点A是右顶点,B是上顶点,∠F1BA=90度,求椭圆的离心率