1.证明函数f在点(0,0)可微分; 2.说明fx的偏导数与fy的偏导数在点(0,0)不连续; 求1.证明函数f在点(0,0)可微分; 2.说明fx的偏导数与fy的偏导数在点(0,0)不连续; 求大神指导
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/24 11:58:09
xjA_eHP˩d!u9nMf]QJэB F}Lv5$!U_
VL7g/vR|B/GzIN_*?>xv}oâ|yo͞no[ôok6w6T뫽fدn7k6°_N&UB|QVu9»*-x<,^7K4hr
Zp-dPASe ybx:!Eq6%ˁ%+)VQ69t1thLjIX#K~.RpQm@Pz.} =5ZT1ct^ɐssK$ g4I=C{%`eg3 YXMGMF hh
1.证明函数f在点(0,0)可微分; 2.说明fx的偏导数与fy的偏导数在点(0,0)不连续; 求1.证明函数f在点(0,0)可微分; 2.说明fx的偏导数与fy的偏导数在点(0,0)不连续; 求大神指导
1.证明函数f在点(0,0)可微分; 2.说明fx的偏导数与fy的偏导数在点(0,0)不连续; 求
1.证明函数f在点(0,0)可微分; 2.说明fx的偏导数与fy的偏导数在点(0,0)不连续; 求大神指导
1.证明函数f在点(0,0)可微分; 2.说明fx的偏导数与fy的偏导数在点(0,0)不连续; 求1.证明函数f在点(0,0)可微分; 2.说明fx的偏导数与fy的偏导数在点(0,0)不连续; 求大神指导
1.证明函数f在点(0,0)可微分; 2.说明fx的偏导数与fy的偏导数在点(0,0)不连续; 求1.证明函数f在点(0,0)可微分; 2.说明fx的偏导数与fy的偏导数在点(0,0)不连续; 求大神指导
证明f(x,y)在点(0,0)处连续且偏导数存在,但不可微分特想知道到底怎么证可微分不可微分啊
证明函数f(x)=xsin(1/x) (x≠0) 在圆点连续或不能微分 f(x)=0 (x=0)
一个很简单的微分中值定理运用题已知函数f(x)在区间[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1.证明:(1)存在ξ∈(0,1)使得f(ξ)=1-ξ;(2)存在两个不同的点η,ξ∈(0,1),使得f'(ξ)f'(η)=1.
设函数f(u)可微,且f'(0)=1/2,则Z=f(4x^2-y^2)在点(1,2)处的全微分dz是?
微分中值定理的几个题目1.不用求出函数f(X)=X(X-1)(X-2)(X-3)的导数,判别方程f'(X)=0的跟的个数.2.设f(X)在实数范围内可导,且有f'(X)=C(常数),证明f(X)一定是线性函数.3.已知函数f(X)在[0,1]上连续,(0,1)
数学分析微分中值定理设函数 f 在(0,a)可导 且 f (0+)=正无穷 证明 f ' 在x=0的右旁无下界希望大家能给我一个详细解答 谢谢!
第六题让构造一个函数f,可以在x=0处微分,但在其他点不连续...第七题证明那个陈述对不对..然第六题让构造一个函数f,可以在x=0处微分,但在其他点不连续...第七题证明那个陈述对不对..然后不
一道关于微分中值定理的证明题求解是一道关于微分中值定理的证明题,题目:设函数f(x)在区间[0,3]上连续,在(0,3)内可导,且f(0)+ f(1)+ f(2)=3,f(3)=1,试证必存在ξ在(0,3)内,使f(ξ)=0.哪位大
关于全微分里证明可微的高数题求解!设f(x,y)在点(0,0)的领域有定义,且fx(0,0)=fy(0,0)=0,证明:f(x,y)在点(0,0)可微的充分必要条件是当(x,y)趋近于(0,0)时,[f(x,y)-f(0,0)]/根号下(x^2+y^2)的极限值为0.
问一个用微分中值定理解决的证明题.f(x)在[0,1]上二阶可导,且f(0)=f(1)=0,证明存在t属于(0,1),使得f''(t)=2f'(t)/(1-t).我找出了辅助函数G(x)=f'(x)(1-x)-f(x),但如何证明它在(0,1)内有两个值相同的点?
两道微分中值定理题1,下面函数 f(x) F(x) 在区间[-1,1] 哪个满足罗尔定理 ,F(x) f(x) F(x) 在区间连续,端点值相同 所以如何证明他们在区间可导f(x) = x * sin(1/x) (x不等于0) ,f(x) = 0 (x等于0)F(x) = (x^2 )*si
二次可微分函数的证明题
【大一数学分析】求证广义罗尔微分中值定理证明:设函数f(x)在(a,b)上可导,f(a+0)=f(b–0)=A,则存在ξ∈(a,b),使得f'(ξ)=0,其中a可以为–∞,b可以为+∞,A可为+∞或–∞.
如果函数z=f(x ,y) 在点(x ,y)可微分这这句话啥意思啊
求教一个微分中值定理的证明题 f(x)在[0,1]可导,f(1)=f(0)=0 证明存在n属于(0,1)使得f(n)+n*f '(n)=0
问一道关于微分中值定理的数学题设函数f(x)在[0,1]上连续,在区间(0,1)上可导,且有f(1)=2f(0),证明在(0,1)内至少存在一点m,使得(1+m)f'(m)=f(m)成立.要用微分中值定理来做,
求教道简单高数微分的题目证明函数在点(0,0)处不可微函数时F(X,Y)=xy/(x^2+y^2) x^2+y^2不等于0F(X,Y)=0 x^2+y^2等于0