锐角三角形ABC中,AC=8,BC=7,sinB=4倍根号3/7,求AB

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/25 08:31:32
锐角三角形ABC中,AC=8,BC=7,sinB=4倍根号3/7,求AB
xN@_K mZk{hWn DHMl `de$^6 E;|L0ĕvq:?/i~Ggiroxi2טG +i>

锐角三角形ABC中,AC=8,BC=7,sinB=4倍根号3/7,求AB
锐角三角形ABC中,AC=8,BC=7,sinB=4倍根号3/7,求AB

锐角三角形ABC中,AC=8,BC=7,sinB=4倍根号3/7,求AB
cosB=根号(1-sin平方B)=1/7
AC^2=AB^2+BC^2-2AB*BC*cosB
AB^2-2AB-15=0
(AB-5)(AB+3)=0
AB=5

先求角B的余弦值为1/7,再用余弦定理,AC方=AB方+BC方-2AB*BC *cosB
代入求值即可。

由正弦定理,得8/sinB=7/sinA, sinA=√3/2, A=60°,
再由余弦定理,得
7^2=c^2+8^2-8c*cos60°, c^2-8c+15=0, c=3 或c=5,
即AB=3或AB=5