证明|by+az bz+ax bx+ay| |x y z||bx+ay by+az bz+ax| =( a^3+b^3 ) |z x y||bz+ax bx+ay by+az| |y z x|

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 16:45:55
证明|by+az bz+ax bx+ay| |x y z||bx+ay by+az bz+ax| =( a^3+b^3 ) |z x y||bz+ax bx+ay by+az| |y z x|
xJ@_eJBs5Q  A/ICMTE`!PbSctEmf]? lucc%E#D1$B+|u1$ hϼߋZm{J/ |K3$.^.TsK ,.7]Npx35`1;SNJ]?к^4gFN[xu8˪Ӧf

证明|by+az bz+ax bx+ay| |x y z||bx+ay by+az bz+ax| =( a^3+b^3 ) |z x y||bz+ax bx+ay by+az| |y z x|
证明|by+az bz+ax bx+ay| |x y z|
|bx+ay by+az bz+ax| =( a^3+b^3 ) |z x y|
|bz+ax bx+ay by+az| |y z x|

证明|by+az bz+ax bx+ay| |x y z||bx+ay by+az bz+ax| =( a^3+b^3 ) |z x y||bz+ax bx+ay by+az| |y z x|
将第一列拆开,其他列不变,分别提出b和a,
然后将拆开的行列式再进行第二行拆开,之后第三行拆开,即可.
我可以把详细过程给你写一下.

证明|by+az bz+ax bx+ay| |x y z||bx+ay by+az bz+ax| =( a^3+b^3 ) |z x y||bz+ax bx+ay by+az| |y z x| 已知abxyz是正实数证明x/(ay+bz)+y/(az+bx)+z/(ax+by)>3/(a+b) 已知abxyz是正实数证明x/(ay+bz)+y/(az+bx)+z/(ax+by)>3/(a+b) 线性代数证明题证明行列式 ax+by ay+bz az+bx ay+bz az+bx ax+by az+bx ax+by ay+bz =(a^3+b^3)x y z y z x z x y不好意思,是前三个式子一列,等号后边是三个元素一行 一道行列式的证明题|by+az bz+ax bx+ay| |x y z||bx+ay by+az bz+ax| =(a^3+b^3)|z x y||bz+ax bx+ay by+az| |y z x|a^3是指a的三次方 矩阵|a1+b1 a1+b2.a1+bn;a2+b1 a2+b2.a2+bn;.an+b1 an+b2.an+bn|等于多少,规律是什么|ax+by ay+bz az+bx;ay+bz az+bx ax+by;az+bx ax+by ay+bz|=(a^3+b^3)|x y z;y z x;z x y|怎么证明;求解题步骤, 已知x+y+z=0,求ax+ay+az-bx-by-bz的值 已知x+y+z=0,求ax+ay+az-bx-by-bz的值 行列式的证明题第一行ax+ay ay+bz az+bxay+bz az+bx ax+byaz+bx ax+by ay+bz证明他等于a+b³乘以一个行列式 第一行 x y z 第二行y z x 第三行z x y 证明:|ax+by ay+bz az+bx||ay+bz az+bx ax+by||az+bx ax+by ay+bz|等于(a+b)乘以|x y z||y z x||z x y|证明:|a (a+1) (a+2) (a+3)||b (b+1) (b+2) (b+3)||c (c+1) (c+2) (c+3)|等于0.搞错了应该是证明:|a (a+1) (a+2) (a+3)||b (b+1) (b+2) ( 行列式第一行ax+by ay+bz az+bx第二行ay+bz az+bx ax+by第三行az+bx ax+by ay+bz怎么样求?我知道,但问题是三行相加提公因式后,不能化成三角阵求解,知道的说下 隐函数偏导数证明题ax+by+cz=F(x^2+y^2+z^2)满足(cy-bz)∂z/∂x+(az-cx)∂z/∂y=bx-ay matlab 里面如何解含有参数的二元一次方程组,比如ax*m+ay*n=-1*az,bx.*m+by*n=-1*bz.比如,ax*m+ay*n=-1*az,bx.*m+by*n=-1*bz.其中ax,ay,az,bx,by,bz都是参数,在解方程组的之前,它们已经被赋值,我能直接用[m,n]=solve('a 已知y+z/ay+bz=z+x/az+bx=x+y/ax+by=m,求证:m=2/a+b 有理数a,b,c,x,y,z满足条件a<b<c及x<y<z,试比较ax+by+cz,ax+cy+bz,bx+ay+az的大小关系. 如果方程组ax by cz=2,bx cy az=2,cx+ay+bz=2的解是x=1,y=-2,z=3求a,b,c ax+bx+cx=(a+b+c)x,ay+by+cy=(a+b+c)y,az+bz+cz=(a+b+c)z,xm+ym+zm=(x+y+z)m,求m的值 设z=z(x,y)是由方程ax+by+cz=F(x^2+y^2+z^2)所确定的函数,求证:(cy-bz)z'...x+(az-cx)z'...y=bx-ay,其中设z=z(x,y)是由方程ax+by+cz=F(x^2+y^2+z^2)所确定的函数,求证:(cy-bz)z'...x+(az-cx)z'...y=bx-ay,其中z'...x,z'...y分别表示z