大师们 才接触线性代数,看书 不明白这一点请求帮助这是一道解题,条件是(A+E)(A-E)=0,A不等于E,所以齐次方程组(A+E)X=0有非零解,从而行列式A+E=0. 不明白,为啥说明有非零解,这

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 08:17:04
大师们 才接触线性代数,看书 不明白这一点请求帮助这是一道解题,条件是(A+E)(A-E)=0,A不等于E,所以齐次方程组(A+E)X=0有非零解,从而行列式A+E=0.             不明白,为啥说明有非零解,这
xTN@,[5)H[kj7]:@ڄ!g ;W RUQ;qιgX=2 fxf:ng\1eV7^9թ;2Sw;q2u bޑwXQx}:d[є(9g6έ*<3M ,udPx#5f\}moQIIM -Pfqxx>-~Pfc> xCIbiƣ+nE#ZTv"Y/15UN-)HP/m,sz=4x#f A %W$M E]i"rjIЈ 0Zfꦯ2'tbR7ͬ * QW4N"?HGaމ,0GO -̐e)Td!Hg$}WҿL!w,MJ, ob".ĝp&/s}Jٴ,b"dיp;/}'tVF{{ܨ2LX~q8OH[J6M N{DYxD. n7p㩾1n>kD_XfSAՀJ<"*NP,  ө_/~Q0=T A:ub(⧪K;E&_ؗȽ]8 5

大师们 才接触线性代数,看书 不明白这一点请求帮助这是一道解题,条件是(A+E)(A-E)=0,A不等于E,所以齐次方程组(A+E)X=0有非零解,从而行列式A+E=0. 不明白,为啥说明有非零解,这
大师们 才接触线性代数,看书 不明白这一点请求帮助
这是一道解题,条件是(A+E)(A-E)=0,A不等于E,所以齐次方程组(A+E)X=0有非零解,从而行列式A+E=0. 不明白,为啥说明有非零解,这一块老是不明白,前面看书假如AB=0,B=0或A=0 并不能说明A=0或B=0,也不能说明A,B都等于0.能讲的明白一点吗

大师们 才接触线性代数,看书 不明白这一点请求帮助这是一道解题,条件是(A+E)(A-E)=0,A不等于E,所以齐次方程组(A+E)X=0有非零解,从而行列式A+E=0. 不明白,为啥说明有非零解,这
首先A不等于E,那么A-E不等于零矩阵(也就是坑定有不为零的列向量),那么它的任意一个非零列向量都是(A+E)x=0的解,也就是齐次方程有非零解.至于AB=0,就看方阵的情况,矩阵乘法不想实数的乘法,并不是每个矩阵都有逆(对于实数来说,每个非零的实数,它的逆就是它的倒数),所以不能像实数乘法那样有消去律,也就是我们无法从AB=0推出你说的那些东西

A-E≠0,存在a(i,j)∈(A-E).且a(i.j)≠0,所以X的解有非零向量。
AB=0推出A=0或B=0,但是不能确定A还是B为0还是这道题,上面回答的:那么它的任意一个非零列向量都是(A+E)x=0的解,也就是齐次方程有非零解。这句话不理解。做题的时候老是在这一点出错。能说的直白一点吗,非零解这一点,最好能举例说明。谢谢...

全部展开

A-E≠0,存在a(i,j)∈(A-E).且a(i.j)≠0,所以X的解有非零向量。
AB=0推出A=0或B=0,但是不能确定A还是B为0

收起