f(x)∈[a,b],在(a,b)可导∃ε∈(a,b) sint [f(b)-f(a)]/[lnb-lna]=ε*f(i)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 01:56:08
x)KӨ|tΊ{:Lͧ럮ߣlan`n}n+PTB83D!:M#IS7M#Q3V?:'/I7'/1V4LM"}_`gC;?]Ɏ[<ݱzz6yv v3
f(x)∈[a,b],在(a,b)可导∃ε∈(a,b) sint [f(b)-f(a)]/[lnb-lna]=ε*f(i)
f(x)∈[a,b],在(a,b)可导∃ε∈(a,b) sint [f(b)-f(a)]/[lnb-lna]=ε*f(i)
f(x)∈[a,b],在(a,b)可导∃ε∈(a,b) sint [f(b)-f(a)]/[lnb-lna]=ε*f(i)
对不起,帮不了你.
f(x)在[a,b]连续且可导,a
f(x)∈[a,b],在(a,b)可导∃ε∈(a,b) sint [f(b)-f(a)]/[lnb-lna]=ε*f(i)
f(x)在〔a,b〕连续,在(a,b)可导,f(a)f(b)>0.f(x)在〔a,b〕连续,在(a,b)可导,f(a)f(b)>0证存在ξ∈(a,b)使〔af(b)-bf(a)〕/a-b=f(ξ)- ξf’(ξ) 如题,
设函数f(x)在[a,b]上连续,在(a,b)可导,且f(a)*f(b)>0,f(a)*f((a+b)/2)
f(x)在(a,b)可导,c∈(a,b),当x≠c时f'(x)>0,f'(c)=0,试证y如题,f(x)在(a,b)可导,c∈(a,b),当x≠c时f'(x)>0,f'(c)=0,试证y=f(x)在开区间(a,b)严格单调递增,
F(x)=f(x)/x^2,f(x)在[a,b]连续,在(a,b)可导,如何证明F(x)在[a,b]连续,在(a,b)可导?想不通,因为我基础比较差,
f(x)在[a,b]上连续,在(a,b)可导,试证明∃ξ∈(a,b)使得2ξ[f(a)-f(b)]=(b^2-a^2)f'(ξ) .
◆微积分 证明 设f(x)在[a,b]连续,在(a,b)可导,f(a) = 0...
用拉格朗日定理证明f(b)-f(a)=ξf'(ξ)ln(b/a);其中f(x)在[a,b]连续可导,b>a,ξ∈(a,b)
设函数f(x)在[a,b]上连续,(a,b)可导,且f(a)=0,证明至少存在一点ξ∈(a设函数f(x)在[a,b]上连续,(a,b)可导,且f(a)=0,证明至少存在一点ξ∈(a,b),使得f(ξ)=(b-ξ)*f'(ξ)
函数f(X)在(a.b)内连续,则f(X)必在(a,b)可导.
f(x)在[a,b]连续,(a,b)可导,且f(a)=f(b)=0.求在[a,b]至少存在一个§使得:f'(§)=f(x)在[a,b]连续,(a,b)可导,且f(a)=f(b)=0.求在[a,b]至少存在一个§使得:f'(§)= - f(§)
f(b)-2f(a+b/2)+f(a)=(b-a)^2/4f''(c)等式证明f(x)在[a,b]上一阶连续可导,在(a,b)内二阶连续可导,证存:存在c属于(a,b)使得f(b)-2f(a+b/2)+f(a)=(b-a)^2/4f''(c)
设f(x)在[a,b]上一阶可导在,(a,b)内二阶可导,且f(a)=f(b)=0,f'(a)>f'(b),证明存在c属于(a,b),使f''(c)=f(c),
设f(x)在[a,b]连续,在(a,b)可导,f'(x)≤0,F(x)=[∫(a→x)f(t)dt]/(x-a),证明在(a,b)有F'(x)≤0
设f(x)在(a,b)内连续可导f'(x)
设函数f(x)在[a,b]可导 且f'(x)
Lim(△x->0) f(x+a△x)-f(x-b△x)/△x=?f(x)在x可导 a,b为常数