设平面内向量OA(1,7),向量OB(5,1),向量OM(2,1),P是直线OM上一个动点…向量PA乘向量PB=-8求向量OP的坐标和向量PA与PB夹角的余弦值

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 04:57:33
设平面内向量OA(1,7),向量OB(5,1),向量OM(2,1),P是直线OM上一个动点…向量PA乘向量PB=-8求向量OP的坐标和向量PA与PB夹角的余弦值
xRKO@+{Dw{UJd¡>)HDQ -V/mˉAy0qO3}3#Sz|] +r<%&b2r1s<|6* USk\*Qd*7

设平面内向量OA(1,7),向量OB(5,1),向量OM(2,1),P是直线OM上一个动点…向量PA乘向量PB=-8求向量OP的坐标和向量PA与PB夹角的余弦值
设平面内向量OA(1,7),向量OB(5,1),向量OM(2,1),P是直线OM上一个动点…向量PA乘向量PB=-8
求向量OP的坐标和向量PA与PB夹角的余弦值

设平面内向量OA(1,7),向量OB(5,1),向量OM(2,1),P是直线OM上一个动点…向量PA乘向量PB=-8求向量OP的坐标和向量PA与PB夹角的余弦值
答案:
1、(4,2)
2、 -4/根号17
(1)因为点P在直线OM:y=0.5X 上
所以可设OP=(X,0.5X)
则 PA=(1-X,7-0.5X)
PB=(5-X,1-0.5X)
PA.PB=(1-X)*(5-X)+(7-0.5X)*(1-0.5X)
=1.25X*X-10X+12
=-8
解这个一元二次方程,得 X=4
所以 OP=(4,2)
2)因为PA=(-3,5)
PB=(1.-1)
所以|PA|=根号34
|PB|=根号2
所以
cos〈PA,PB〉= -4/根号17

已知坐标平面内向量OA=(1,5),向量OB=(7,1),向量OM=(1,2), 向量 (29 12:56:5)设平面内的向量OA(向量)=(1,7),OB(向量)=(5,1),OM(向量)=(2,1),点P是直线OM上的一个动点,求当PA(向量)*PB(向量)去最小值时,OP(向量)的坐标及∠APB的余弦值. 设平面内向量OA(1,7),向量OB(5,1),向量OM(2,1),P是直线OM上一个动点…向量PA乘向量PB=-8求向量OP的坐标和向量PA与PB夹角的余弦值 (1)若O是△ABC所在平面内一点,且满足|向量OB-向量OC|=|向量OB+向量OC-2向量OA|,则△ABC的形状为(2)若D为三角形ABC的边BC的中点,△ABC所在平面内有一点P,满足向量PA+向量BP+向量CP=0向量,设|向量AP|/| 如图,在平面内有三个向量OA,OB,OC,满足OA=OB=1,OA与OB的夹角为120度,OC与OA的夹角为30度,OC=5根号下3,设OOC=m向量OA+n向量OC,则m+n等于 已知O,A,B是平面上不共线三点,设P为线段AB垂直平分线上任一点,若向量OA模长7,向量OB模长5则(向量OP)*(向量OA-向量OB)=? 已知平面内A,B,C三点在一条直线上,向量OA=(-2,m),向量OB=(n,1),向量OC=(5,-1),且向量OA垂直于向量OB 已知平面坐标内O为坐标原点,OA向量=(1,5),OB向量=(7,1),OM向量=(1,2),P是线主要想问一下线段OM和直线OM做出结果有差别吗?已知平面坐标内O为坐标原点,OA向量=(1,5),OB向量=(7,1),OM 已知平面内四点O,A,B,C,满足向量设O,A,B,C为平面上的四点,向量OA+向量OB+向量OC=向量0 OA*OB=OB*OC=OC*OA=-1,则三角形的面积是 设向量OA=(2,5),向量OB=(3,1),向量OC(4,2)用向量OA OB为基底表示向量OC 平面内有三个向量OA,OB ,OC 其中向量OA与向量OB 的夹角为120度,向量OA与...平面内有三个向量OA,OB ,OC 其中向量OA与向量OB 的夹角为120度,向量OA与向量OC的夹角为30度,平面内有三个向量OA,OB ,OC 其中 平面内有三个向量OA,OB ,OC 其中向量OA与向量OB的夹角为120度,向量OA与向量OC的夹角为30度,且|OA|=|OB|=1,若向量OC=2√3 若向量OC=a向量OA+b向量OB 则a+b的值为 平面内有三个向量OA,OB ,OC 其中向量OA与向量OB 的夹角为120度,向量OA与与向量OC的夹角为30度,平面内有三个向量OA,OB ,OC 其中向量OA与向量OB的 夹角为120度,向量OA与向量OC的夹角为30度,且|OA|=|OB|=1, 设平面内四边形ABCD及任意一点O,向量OA=向量a,向量OB=向量b,向量OC=向量c,向量OD=向量d.若向量a+向量c=向量b+向量d且|向量a-向量b|=|向量a-向量d|.试判断四边形ABCD的形状 若平面内三个向量 OA OB OC 其中=120°平面内有三个向量OA,OB ,OC 其中向量OA与向量OB的夹角为120度,向量OA与向量OC的夹角为30度,且|OA|=|OB|=1,若向量OC=2√3 若向量OC=a向量OA+b向量OB 则a+b的值为 因为 设平面内的向量OA=(1,7),OB=(5,1),OM=(2,1),点p是直线OM上的一个动点,且向量PAPB=-8,求向量OP的坐标及角APB的余弦值.是向量PA·PB=-8 平面向量证明题设向量OA,向量OB不共线,P点在AB上.求证:向量OP=λ向量OA+μ向量OB且λ+μ=1,λ,μ属于R. 平面向量练习题设向量OA=(3,1),OB=(-1,2),向量OC垂直向量OB,向量BC平行于OA,求OD+OA=OC时,OD的坐标