设函数f(x)在区间(0,1)上连续,并设∫(0,1) f(x)dx=1,则∫ dx∫ f(0,1)dx∫(x,1) f(x)f(y)dy=

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/29 03:51:52
设函数f(x)在区间(0,1)上连续,并设∫(0,1) f(x)dx=1,则∫ dx∫ f(0,1)dx∫(x,1) f(x)f(y)dy=
xRj@, N_"Yi7]&GbU( H뿔I/t2*M%\f9>W(O𦲈j-_OyX~޷JLL-#%IRYƕ5YOJ(I9upgQz%Bu3% ^ <6X@i LGb1w&v#Ģ@ dmR8

设函数f(x)在区间(0,1)上连续,并设∫(0,1) f(x)dx=1,则∫ dx∫ f(0,1)dx∫(x,1) f(x)f(y)dy=
设函数f(x)在区间(0,1)上连续,并设∫(0,1) f(x)dx=1,则∫ dx∫ f(0,1)dx∫(x,1) f(x)f(y)dy=

设函数f(x)在区间(0,1)上连续,并设∫(0,1) f(x)dx=1,则∫ dx∫ f(0,1)dx∫(x,1) f(x)f(y)dy=
您确定原题是求∫ dx∫ f(0,1)dx∫(x,1) f(x)f(y)dy吗?是不是∫ f(0,1)dx∫(x,1) f(x)f(y)dy?
如果是前者,答案是x/2+C.如果是后者,答案是1/2.
∫ f(0,1)dx∫(x,1) f(x)f(y)dy=∫ f(0,1)dy∫(y,1) f(x)f(y)dx=∫ f(0,1)dx∫(0,x) f(x)f(y)dy.(由于f(x)连续,所以可以进行重积分易序)
∫ f(0,1)dx∫(x,1) f(x)f(y)dy+∫ f(0,1)dx∫(0,x) f(x)f(y)dy=∫ f(0,1)dx∫(0,1) f(x)f(y)dy.
∫ f(0,1)dx∫(0,1) f(x)f(y)dy=∫ f(0,1)f(x)dx=1.
所以∫ f(0,1)dx∫(x,1) f(x)f(y)dy=1/2.

题目有错吧?∫ f(0,1)dx 是什么?