过抛物线y=2x的定点作互相垂直的两条弦OA,OB.求AB中点M的轨迹方程

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/25 03:21:10
过抛物线y=2x的定点作互相垂直的两条弦OA,OB.求AB中点M的轨迹方程
xUrF~ad@)jU -\--88y"ь)o4B׭!hM_t2͏Y|ts]%{}HL[m|cް7:L/wc~?똷}onKN~C yw_2ꔤ)D]I#NG&QDDt%sIhCVPFSt?NMQu%_d'_i=~0OZH2cw%o0Kɨ |Sc'epDkֶΖUQLv5rޝc!JZ-;h61Kp^} _}*p%N eDWڑ}=spJpA:mêcQ8Ω ZG dSvN.&9FA)hhy5 lDt_{b&`rf᜙=5BFa띵F'mw7H oݤ槔ő_ B+ x`XjVѐ&Y%KmEFCҷ?EX,\{h<:o}jn5#E]O,6wuFTHH=Q#ۀNBdUEt}-y2=r4z(%s4sכYƍLC9;:/.;e̱o6/b*BIucKwP+UYx AO9UĔ}L5~[ nJ"ܘ xÊ)|*\ ϝ?1\`OU l*Y(9(`D.8A=[zZ˴VY K gwFYN7B|HlXLn2љi@t3c`!=ewyc]=5?d3Y

过抛物线y=2x的定点作互相垂直的两条弦OA,OB.求AB中点M的轨迹方程
过抛物线y=2x的定点作互相垂直的两条弦OA,OB.求AB中点M的轨迹方程

过抛物线y=2x的定点作互相垂直的两条弦OA,OB.求AB中点M的轨迹方程
A(x1,y1)
B(x2,y2)
M点((x1+x2)/2,(y1+y2)/2)
(x1+x2)/2*(y1+y2)/2=0
x1y1+x2y1+x1y2+x2y2=0
2x1=y1
2x2=y2
所以
3x1^2+2x1x2+2x1x2+2x2^2=0
3x1^2+4x1x2+2x2^2=0
(x1+x2)/2>=√(x1x2)

设A,B两点的坐标,然后根据向量垂直时乘积为0,以及A,B满足抛物线上的点,求解A,B。最后按1/2的A,B坐标和解中点

解:
引理1:过两条直线l1=0与l2=0交点的任意一条直线l的方程l=0可写为l=λl1+μl2
引理2:过两条圆锥曲线c1=0和c2=0四个交点的任意一条圆锥曲线c=0方程都可写为c=λc1+μc2
在抛物线y^=2px中,设它的一条对顶点张角为直角的弦的方程为l=0,弦的端点与原点连线的方程为y=k1x和y=k2x,其中k1k2=-1,则(y-k1x)(y-k2x)=...

全部展开

解:
引理1:过两条直线l1=0与l2=0交点的任意一条直线l的方程l=0可写为l=λl1+μl2
引理2:过两条圆锥曲线c1=0和c2=0四个交点的任意一条圆锥曲线c=0方程都可写为c=λc1+μc2
在抛物线y^=2px中,设它的一条对顶点张角为直角的弦的方程为l=0,弦的端点与原点连线的方程为y=k1x和y=k2x,其中k1k2=-1,则(y-k1x)(y-k2x)=0可看作一条特殊的圆锥曲线c1=0把抛物线y^=2px看作圆锥曲线c2=0,其中c2=y^2-2px,把方程x*l=0看作一条圆锥曲线c=0则由引理2,c=λc1+μc2,即x*l=λ(y-k1x)(y-k2x)+μ(y^2-2px),则方程左边能被x整除,右边也必须能被x整除.令λ=-1,μ=1即可满足要求.化简得x*l=(k1+k2)xy-k1k2x^2-2px=0,即l=-k1k2x+(k1+k2)y-2p,注意到k1k2=-1,l=x+(k1+k2)y-2p,或写为l=(x-2p)+(k1+k2)y,即弦的方程为(x-2p)+(k1+k2)y=0,由引理1它经过直线x-2p=0与直线y=0的交点,即点(2p,0)
设这条弦的中点为M,由弦过定点(2p,0),故它的方程可写为y=k(x-2p),由抛物线弦中点的性质k*yM=p,同时弦的中点坐标必须满足yM=k(xM-2p),消去k可得y^2=p(x-2p),即为弦的中点轨迹.
我可以帮助你,你先设置我最佳答案后,我百度Hii教你。

收起

过抛物线y=2x的定点作互相垂直的两条弦OA,OB.求AB中点M的轨迹方程 过抛物线y=x2的顶点作互相垂直的两条弦OA、OB如何证明直线AB过定点 过抛物线Y^2=2X的顶点作互相垂直的两条弦OA,OB(1)求AB中点的轨迹方程(2)求证:AB与X轴的交点为定点非常感谢~! 过抛物线Y^2=2X的顶点作互相垂直的两条弦OA,OB .过抛物线Y^2=2X的顶点作互相垂直的两条弦OA,OB过抛物线Y^2=2X的顶点作互相垂直的两条弦OA,OB 过抛物线Y^2=2X的顶点作互相垂直的两条弦OA,OB (1)求 3、过抛物线y²=2x的顶点作互相垂直的弦OA,OB(1)求AB中点的轨迹方程.2)证明AB过定点. 3.过抛物线y=x^的顶点作互相垂直的两弦OA和OB.(1)求证直线AB必通过一个定点;(2)以OA,OB为直径分别作两圆,求两圆另一个交点的轨迹 过抛物线y^2=2x的顶点作互相垂直的两条弦OA,OB.求中点的轨迹方程,求证直线AB过顶点 已知M(m,n)为抛物线Y^2=2X上的一个定点,过M做抛物线两条互相垂直的弦MP,MQ,直线PQ必过定点T,则点T坐标为(____) 过抛物线y^2=2px(p>0)的顶点O作互相垂直的弦OA、OB(1)、求弦中点M的轨迹方程(2)、求证:直线AB过定点 过抛物线y=4x的焦点F作互相垂直的两条弦AB与CD,求│AB│+│CD│的最小值 过抛物线C:y²=4x的焦点F作互相垂直的两条弦AB和CD,则|AB|+|CD|的最小值为 过抛物线Y平方=4x的焦点F作互相垂直的两条弦AB和CD,则|AB|+|CD|的最小值是? 过抛物线y^2=8x的焦点F作互相垂直的两弦AB和CD,试求AB+CD的绝对值的最小值 若过两抛物线y=x^2-2x+2 和 y=-x^2+ax+b的一个交点为P的两条切线互相垂直.求证:抛物线y=-x^2+ax+b过定点Q,并求出定点Q 的坐标 过抛物线Y方=6X的顶点作互相垂直的两条直线,交抛物线于AB两点,求线段AB中点的轨迹方程? 已知抛物线y^2=4x的焦点为F,过F作两条互相垂直的玄AB,CD.设AB,CD的中点分别为M,N 求证:直线MN必过定点是证明题 参数 过抛物线x=2pt2 y=2pt的顶点O任作互相垂直的两条弦OA,OB,交抛物线于A,B两点,过抛物线x=2pt2 y=2pt的顶点O任作互相垂直的两条弦OA,OB,交抛物线于A,B两点,求证:此两点的中点M的轨迹是一条抛物 过抛物线作y=x方的顶点作互相垂直的两条弦OA,OB,抛物线的顶点O在直线AB上的射影为P,求动点P的轨迹方程.