已知函数f(x)=|x-a|,g(x)=x^2+2ax+1(a为正整数),且函数f(x)与g(x)的图象在y轴上的截距相等.(1)求a的值;(2)求函数f(x)+g(x)的单调递增区间;(3)若n为正整数,证明10^[f(n)]*(4/5)[g(n)]
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 17:49:03
xRN@.glK?B$6ah"`a$+>PcBCB״Ӳ3]q3{ιV5[xf3,!5K6kR}ZEUTMK$)<`Xm3=7v41h%tC
kעuo9PSZ(&zghx0t:DŽ~eu))zݧWm-J7 W6qnήVu~L'_8g4jhO#V)lJ&0;GbmX\I|&R!H\TeDG\9!g1xNQ o)yae k2 y(pa5.ʲ8~3u %OSf`/a
已知函数f(x)=|x-a|,g(x)=x^2+2ax+1(a为正整数),且函数f(x)与g(x)的图象在y轴上的截距相等.(1)求a的值;(2)求函数f(x)+g(x)的单调递增区间;(3)若n为正整数,证明10^[f(n)]*(4/5)[g(n)]
已知函数f(x)=|x-a|,g(x)=x^2+2ax+1(a为正整数),且函数f(x)与g(x)的图象在y轴上的截距相等.
(1)求a的值;
(2)求函数f(x)+g(x)的单调递增区间;
(3)若n为正整数,证明10^[f(n)]*(4/5)[g(n)]<4.
已知函数f(x)=|x-a|,g(x)=x^2+2ax+1(a为正整数),且函数f(x)与g(x)的图象在y轴上的截距相等.(1)求a的值;(2)求函数f(x)+g(x)的单调递增区间;(3)若n为正整数,证明10^[f(n)]*(4/5)[g(n)]
(1)y=|x-a|与y轴的交点为(0,a)
y=x^2+2ax+1与y轴的交点为(0,1)
所以a=1
(2)f(x)=|x-1|
g(x)=x^2+2x+1=(x+1)^2
x>=1 f(x)+g(x)=x-1+(x+1)^2=x^2+3x=(x+3/2)^2-9/4
所以在x>-3/2上面增 (因为x>=1 )所以x>=1 上增
x=-1/2上面增 (因为x
已知定义在R上的函数f(x),g(x)满足f(x)/g(x)=a^x,且f'(x)g(x)
已知函数f(x)=2x-a,g(x)=x^2+1.G(x)=f(x)/g(x),H(x)=f(x)·g(x)(1) 当x∈[-1,1],求使G(x)
已知函数f(x)=x^+ax,g(x)=2^x-a,且1/2
已知f(x),g(x)都是定义在R上的函数 g(x)≠0 f'(x)g(x)<f(x)g'(x),f(x)=a^x g(x),怎样由 f'(x)g(x)<f(x)g'(x)得出发f(x)/g(x)为减函数
已知函数f(x)=x²,g(x)=-af²(x)+(2a-1)f(x)+1(a
已知f(x)=cosx,若函数g(x)=f(x+a)+f'(x+a)(0
已知函数f(x)=log2(x^2-x),g(x)=log2(ax-a).求的f(x)定义域
已知函数f(x)的定义域为[0,1],g(x)=f(x+a)+f(x-a),求函数g(x)的定义域.
已知函数f(x)=a-2/(a的x次方+1),g(x)=1/(f(x)-a)
如题:对于定义域分别是F,G的函数y=f(x),y=g(x),规定函数【h(x)为分段函数】 ①当x∈F且x∈G 时,h(x)=f(x)+g(x); ②当x∈F且 x ∉G时,h(x)=f(x);③当x ∉F且x∈G时,h(x)=g(x) ,已知函数f(x)=x²,g(x)=a
复合函数已知分段函数f(x) g(x)求f(g(x))已知f(x)=1 (当-1
已知函数f(x)=e∧x+ax,g(x)=ax-lnx,其中a
已知函数f(x) g(x)均为闭区间a,b上可导函数,且f'(x)>g'(x),f(a)=g(a) 求当闭区间a,b时 f(x)≥g(x)
已知函数f(x) g(x)均为闭区间a,b上可导函数,且f'(x)>g'(x),f(a)=g(a) 求当闭区间a,b时 f(x)≥g(x)
已知函数f(x)=loga(x+1),g(x)=loga(1-x)(其中a>0,且a≠1) (3)求使f(x)+g(x)
已知函数f(x)=LOGa(x+1).g(x)LOGa(1-x),a>0.a不等于1.求f(x)-g(x)的定义域和奇偶性
已知函数f(x)=4-|x|,g(x)=x^2-2x,F(x)=min{f(x),g(x)},其中min{a,b}={a(ab)}则函数y=F(x)
已知函数f(X)=2-X^2.g(x)=x.若定义函数F(X)=min(F(X),G(x)),则F(x)的最大值