1.已知点p(4,4),椭圆E x^2/18+y^2/2=1 椭圆上点A(3,1) F1,F2分别是椭圆的左右焦点,Q为椭圆E上一动点,求向量AP乘向量AQ的取值范围2.如图,在三棱锥P-ABC中,PA,PB,PC两两垂直,且PA=3,PB=2,PC=2 ,PC=1,设M是底面ABC

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 14:19:52
1.已知点p(4,4),椭圆E x^2/18+y^2/2=1 椭圆上点A(3,1) F1,F2分别是椭圆的左右焦点,Q为椭圆E上一动点,求向量AP乘向量AQ的取值范围2.如图,在三棱锥P-ABC中,PA,PB,PC两两垂直,且PA=3,PB=2,PC=2 ,PC=1,设M是底面ABC
xU[ObW+TIMxiP*3xUAgsx/0mykҤ gnZ[_pRxwa616bLo<1GQe}76wzr3k%##Ibr&Ū6qՕ;̓1el31ZB6cOJbrh d|su~7mM{E[Y ԰;w埂7$U0x= +T!З'> fduH

1.已知点p(4,4),椭圆E x^2/18+y^2/2=1 椭圆上点A(3,1) F1,F2分别是椭圆的左右焦点,Q为椭圆E上一动点,求向量AP乘向量AQ的取值范围2.如图,在三棱锥P-ABC中,PA,PB,PC两两垂直,且PA=3,PB=2,PC=2 ,PC=1,设M是底面ABC
1.已知点p(4,4),椭圆E x^2/18+y^2/2=1 椭圆上点A(3,1) F1,F2分别是椭圆的左右焦点,Q为椭圆E上一动点,求向量AP乘向量AQ的取值范围
2.如图,在三棱锥P-ABC中,PA,PB,PC两两垂直,且PA=3,PB=2,PC=2 ,PC=1,设M是底面ABC内一点,定义f(M)=(m,n,p),其中m,n,p分别为三棱锥M-PAB,M-PBC,M-PCA的体积,若f(M)=(1/2,x,y)且1/x+a/y>=8恒成立,则实数a的最小值为?
图就自己画一下吧
戈多你的求导错了,不过意思我明白了.可是答案是[-20,0]?质疑...我觉得你的方法是对的.
第2题已自行解决,诶,其实还满简单的,无视之~
有没有人第一题能算出[-20,

1.已知点p(4,4),椭圆E x^2/18+y^2/2=1 椭圆上点A(3,1) F1,F2分别是椭圆的左右焦点,Q为椭圆E上一动点,求向量AP乘向量AQ的取值范围2.如图,在三棱锥P-ABC中,PA,PB,PC两两垂直,且PA=3,PB=2,PC=2 ,PC=1,设M是底面ABC
1.设Q点坐标为(3√2cosx,√2sinx),用三角代换.
∵点A(3,1),点p(4,4)
∴AP.AQ=(1,3).(3√2cosx-3,√2sinx-1)=3√2(sinx+cosx)-6=6sin(x+π/4)-6.
∵sin(x+π/4)在[-1,1]之间
∴AP.AQ应该在[-12,0]
当然,你可能疑惑为什么AP.AQ没有正值,其实是∵A、P两点间斜率K1与椭圆曲线在点A处切线斜率K2满足K1*K2=-1,即直线AP与椭圆曲线在点A处切线垂直所致.具体证法:
取y>0的椭圆上半部分,此时原椭圆方程转化为f(x)=y=√(2-x²/9),对此函数求导,得f(x)'=-x/√(18-x²),则椭圆曲线在点A处切线K1=f(3)'=-1,又易得K2=1,综上得证.

设Q的做标为(xo,yo),则向量AP=(1,3),AQ向量=(xo-3,yo-1),则向量AP乘向量AQ=xo-3+3yo-3=xo+3yo-6

我能 用三角换元法算 设P(sinα,cosα) 再列式子 球三角函数式的取值范围

已知椭圆E:x^2/2+y^2/4=1的左、右焦点分别是F1,F2,点P为椭圆E第一象限上一点,且满足向量(PF1)点乘向量(PF2)=1.过点P做倾斜角互补的两条直线PA,PB分别交椭圆E于点A,B.(1)求点P坐标;(2)求直线AB斜率;( 已知椭圆E:x^2/2+y^2/4=1的左、右焦点分别是F1,F2,点P为椭圆E第一象限上一点,且满足向量(PF1)点乘向量(PF2)=1.过点P做倾斜角互补的两条直线PA,PB分别交椭圆E于点A,B.(1)求点P坐标;(2)求直线AB斜率;( 1.已知点p(4,4),椭圆E x^2/18+y^2/2=1 椭圆上点A(3,1) F1,F2分别是椭圆的左右焦点,Q为椭圆E上一动点,求向量AP乘向量AQ的取值范围2.如图,在三棱锥P-ABC中,PA,PB,PC两两垂直,且PA=3,PB=2,PC=2 ,PC=1,设M是底面ABC 已知椭圆E:x²/100+y²/25=1的上顶点为A,直线y=-4交椭圆E于点B,C(点B在点C的左侧)点P在椭圆E上1.若点P的坐标为(6,4),求四边形ABCP的面积2.若四边形ABCP为梯形,求点P的坐标 已知椭圆P 的中心O在坐标原点,焦点在X坐标轴上,且经过点A(0,2根号3)离心率为1/21)求椭圆P的方程2)是否存在过点E(0,-4)的直线L交椭圆P于点R,T,且满足向量OR*向量OT=16/7 已知椭圆P的中心O在坐标原点,焦点在x轴上,且经过A(0,2根号3,离心率1/21.求椭圆P的方程2.是否存在过点E(0,-4)的直线l交椭圆P于点R,T且满足OR垂直OT,若存在求l方程 求助:椭圆轨迹的题已知:椭圆(x^2/16)+(y^2/7)=1.若p为椭圆上的动点,m为过p且垂直于x轴的直线上的点,(|op|/|om|)=e(e为椭圆的离心率),求点m的轨迹方程. 已知椭圆E:(x^2/a^2)+(y^2)/(b^2)=1(a>b>0)的离心率是√2/2,椭圆上的店到右准线的最近距离是4-2√21.求椭圆E的方程2.若点A式椭圆E和y轴的正半轴的交点,点P,Q是异于点A的两个动点,满足AP向量*AQ向量= 已知共焦点F2的抛物线y2=4x与椭圆C的一个交点为P,点F1是椭圆的左焦点且|PF1|=5.若点P的横坐标为2,则椭圆的离心率e= 已知椭圆C的中心在原点,对称轴为坐标轴,左右焦点分别为F1,F2,P是椭圆C上的一点,三角形PF1F2的周长为6椭圆C的方程为X^2/4+Y^2/3=1.A(1,1.5)为椭圆C上的定点,E,F是椭圆C上的两个动点,如果直线AE的 已知椭圆的离心率为3|2以原点为中心椭圆的短半轴为半径的圆与直线x-y+2=0相切设p(4,0)M,N昰椭圆C上关于X轴对称的任意两个不同点连结pN交椭圆C于另一点E求直线pN的钭率取值范围图怎么画 已知椭圆C的方程为x^2/4+y^2/3=1,P(4,0),A,B是椭圆C上关于x轴对称的任意两个不同的点,连接PB交椭圆C于另一点E,求证:直线AE与x轴相交于定点Q. 1.已知椭圆方程为x^2/9+y^2/4=1,在椭圆上是否存在点P(x,y)到定点A(a,0)(其中00),直线L为圆O:x^2+y^2=b^2的一条切线,记椭圆C的离心率为e.(1)若直线L的倾斜角为60°,且恰好经过椭圆C的右顶 已知椭圆C:X^2/4+y^2/3=1,点P(4,0),A,B是椭圆C上关于x轴对称的任意两个不同的点,连结PB交椭圆C于另一点E,直线AE与x轴相交于点Q,过点Q的直线与椭圆C交于M,N两点,求向量OM和向量ON的数量积的取值 P(4,0)椭圆x^2/4+y^2/3=1,AB是椭圆上关于x轴对称的任意两个不同的点,连接PB交椭圆于另一点E,证...P(4,0)椭圆x^2/4+y^2/3=1,AB是椭圆上关于x轴对称的任意两个不同的点,连接PB交椭圆于另一点E, 设椭圆的中心在原点,长轴在x轴上,离心率e=根号3/2.已知点P(0,3/2)到这个椭圆上的点的最远距离为根号7,求这个椭圆方程.并求椭圆上到点P的距离等于根号7的点的坐标.设该点为M |PM|^2=-3(y+1/2)^2+4b 已知椭圆方程为x^2*9+y^2/4=1,在椭圆上是否存在点P(x,y)到定点A(a,0))(其中0 已知点M(2/3,1)为椭圆x^2/4+y^2/3= 1内一点,P为椭圆上一点,点F2为椭圆的右焦点求2*PF2+PM的最小值并求P坐标