已知动圆M与y轴相切,且与定圆C:x^2+y^=2ax(a>0)外切,求动圆圆心M的轨迹方程是 y^2. 步骤~~

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/24 15:42:20
已知动圆M与y轴相切,且与定圆C:x^2+y^=2ax(a>0)外切,求动圆圆心M的轨迹方程是 y^2.  步骤~~
xTMOQ+,!>']5†ĝ?ۦ1 $P?p@ߊ/@4e`fV7v&&s9&gCרؠ)eޝt\a^g j zdH6SԓUwd]P埻8-^wmc*߻dX$¯kUu~~1m}|69ahfԈ>oHkϩfٜ1'VKhhz=2zZ d ʈ<1?XRp==.nc2F |iS:5#ą_6 {TAgŊ(\GWmM-(95m)(fhXoRG b{Ahp_yHc$RQ鰡|^qE4y-'BX6nQL8nnKԴ}ԡg a;0PX&=֯lnrԿo"Jv0@Rz,Ee}tNrbkӽO?'.N

已知动圆M与y轴相切,且与定圆C:x^2+y^=2ax(a>0)外切,求动圆圆心M的轨迹方程是 y^2. 步骤~~
已知动圆M与y轴相切,且与定圆C:x^2+y^=2ax(a>0)外切,求动圆圆心M的轨迹方程
是 y^2. 步骤~~

已知动圆M与y轴相切,且与定圆C:x^2+y^=2ax(a>0)外切,求动圆圆心M的轨迹方程是 y^2. 步骤~~
与Y轴相切(x-r)^2+(y-c)^2=r^2 以(r,c)为圆心,|r|为半径的圆
C:(x-a)^2+y^2=a^2
相切得到(r-a)^2+c^2=(|r|+a)^2,圆心距等于半径和,等号左边为圆心距的平方,右边为半径和的平方
以下是2种解法,都可以解得抛物线方程,1比较简单,容易理解,2稍微复杂点.2种解法都需要把原点去掉,因为M在原点时半径为0,不能算是圆.
1)数形结合,C在Y轴右边,则r必须大于0,才能使圆M与Y轴和圆C相切
则圆心满足(r-a)^2+c^2=(r+a)^2
化简c^2-4ar=0
轨迹为y^2-4ax=0 ,(原点除外)
2)利用定义:
平面内,到一个定点F和一条定直线l距离相等的点的轨迹(或集合)称之为抛物线
这里定点是圆C的圆心(a,0),圆心M到C的距离为a+r,到y=0的距离为r,到y=-a的距离为a+r,那么,在定义里,F即圆心C(a,0),定直线为y=-a,抛物线对称轴为x轴,开口向右,且过原点,则可得抛物线方程y^2-4ax=0,(原点除外)
特例:由于圆C与Y轴已经相切,则若圆M与Y轴切于原点,则必与圆C相切,再根据外切的条件,得另一个方程,y=0(x0时与C内切,不符合条件.
综上所述,方程为y^2-4ax=0(原点除外)和y=0(x

已知动圆C与定圆M:(x-2)^2+y^2=1相切,且与y轴相切,则圆心C的轨迹方程_____ 已知动圆M与y轴相切,且与定圆C:x^2+y^=2ax(a>0)外切,求动圆圆心M的轨迹方程是 y^2. 步骤~~ 已知动圆M与直线y=2相切,且与定圆C:x^2+(y+3)^2=1外切,求动圆圆心M的轨迹方程. 高二数学、已知动圆M与直线y=3相切,且与定圆C:x^2+(y+3)^2=1外切,求动圆圆心M的轨迹方程 已知动圆M与y=2相切,且与定圆C:x²+(y+3)²=1外切,求动圆圆心M的轨迹方程会+分的! 已知动圆M与圆C:X^2+(y-1)^2=1外切且与X轴相切,求动圆圆心的轨迹方程. 已知动圆M与直线y=2相切,且与定圆C:x平方+(y+3)平方=1外切,求动圆圆心的轨迹方程 已知动圆M与Y轴相切且与定圆C^2+Y^2=2AX(A>0)外切求动圆圆心M的轨迹方程 已知动圆过定点P(1,0),且与定直线l:x=-1相切,点C在l上,该动圆圆心轨迹M的方程为y^2=4x设过点P,且斜率为...已知动圆过定点P(1,0),且与定直线l:x=-1相切,点C在l上,该动圆圆心轨迹M的方程为y^2=4x设过 高中数学必修2试题已知动圆M与y轴相切且与定圆A(x-3)^2+y^2=9外切,求动圆的圆心M的轨迹方程? 、已知动圆M与直线y=2相切,且与定圆C:x2+(y+3)2=1外切,求动圆圆心M的轨迹方程 已知动圆M与y轴相切且与定圆A:(x-3)²+y²=9外切,则动圆圆心的M的轨迹方程. 一动圆与定圆X^2+Y^2-6Y=0相切,且与X轴相切,求动圆圆心的轨迹方程 一动圆与定圆x^2+y^2-6y=0相切,且与x轴相切,求动圆圆心的轨迹方程. 一动圆与定圆X^2+Y^2-6Y=0相切,且与X轴相切,求动圆圆心的轨迹方程 已知动圆M与直线l:x-2=0相切,且与定圆(x+3)^2+y^2=1相外切,求动圆圆心M的轨迹方程求详解 已知动圆m与y轴相切且与定圆a:(x-3)2+y2=9外切,求动圆的圆心M的轨迹方程 动圆M与定圆C:x^2+y^2+4x=0相外切,且与直线L:x-2=0相切,则动圆M的圆心的轨迹方程