p=1/(2+2^1/2)+1/(18^1/2+12^1/2)+.+1/[(n+1)n^1/2+n(n+1)^1/2](n为正整数)证p小于1,大于0

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/29 03:48:41
p=1/(2+2^1/2)+1/(18^1/2+12^1/2)+.+1/[(n+1)n^1/2+n(n+1)^1/2](n为正整数)证p小于1,大于0
x)+50637 -@LmCP,Z#OP3,fyOvzv[M~OO7?gtr m`TOs; l&em!:fI0/V P, 8b!HZ 7Ӄ![ sKu6<ٽTyvРshy-.;޽

p=1/(2+2^1/2)+1/(18^1/2+12^1/2)+.+1/[(n+1)n^1/2+n(n+1)^1/2](n为正整数)证p小于1,大于0
p=1/(2+2^1/2)+1/(18^1/2+12^1/2)+.+1/[(n+1)n^1/2+n(n+1)^1/2](n为正整数)证p小于1,大于0

p=1/(2+2^1/2)+1/(18^1/2+12^1/2)+.+1/[(n+1)n^1/2+n(n+1)^1/2](n为正整数)证p小于1,大于0
1/[(n+1)n^1/2+n(n+1)^1/2]
=[(n+1)√n-n√(n+1)]/n(n+1)
=1/√n-1/√(n+1)
p=1/(2+2^1/2)+1/(18^1/2+12^1/2)+.+1/[(n+1)n^1/2+n(n+1)^1/2]
=(1-1/√2)+(1/√2-1/√3)+...+(1/√n-1/√(n+1))
=1-1/√(n+1)
所以,0

1/[(n+1)n^1/2+n(n+1)^1/2]
=[(n+1)√n-n√(n+1)]/n(n+1)
=1/√n-1/√(n+1)