用二次项定理证明3^(2n+2)-8n-9能被64整除 n属于全体实数?这是网友的正确回答,题目没有给n限制,n为何一定取整数?若n=0,二项式第一项8^1不就不能被64整除了?3^(2n+2)-8n-9=9^(n+1)-8n-9=(8+1)^(n+1)-8n-9=[8^(n

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/26 12:20:11
用二次项定理证明3^(2n+2)-8n-9能被64整除 n属于全体实数?这是网友的正确回答,题目没有给n限制,n为何一定取整数?若n=0,二项式第一项8^1不就不能被64整除了?3^(2n+2)-8n-9=9^(n+1)-8n-9=(8+1)^(n+1)-8n-9=[8^(n
x]N@ǯ#Z>S16l^ B!RJ1$B hG{ &>4sb ߘjE: n$Ky=拯=l!2bJ.ؽ!f6'Yoі:Qˬ}A}fDq#ZL7A;%hj5np1Qo;TnHo*bIIYL]̆)%&"A)JONf7p:WB# T>H > + 4qGgtRK v`镕L̺x]ec5gߙǙ'&LIouVYeT4

用二次项定理证明3^(2n+2)-8n-9能被64整除 n属于全体实数?这是网友的正确回答,题目没有给n限制,n为何一定取整数?若n=0,二项式第一项8^1不就不能被64整除了?3^(2n+2)-8n-9=9^(n+1)-8n-9=(8+1)^(n+1)-8n-9=[8^(n
用二次项定理证明3^(2n+2)-8n-9能被64整除 n属于全体实数?
这是网友的正确回答,题目没有给n限制,n为何一定取整数?若n=0,二项式第一项8^1不就不能被64整除了?
3^(2n+2)-8n-9
=9^(n+1)-8n-9
=(8+1)^(n+1)-8n-9
=[8^(n+1)+(n+1)*8^n+……+n(n+1)/2*8^2+(n+1)*8+1]-8n-9
=8^(n+1)+(n+1)*8^n+……+n(n+1)/2*8^2
每一项都可以被8^2=64整除
所以3^(2n+2)-8n-9可以被64整除

用二次项定理证明3^(2n+2)-8n-9能被64整除 n属于全体实数?这是网友的正确回答,题目没有给n限制,n为何一定取整数?若n=0,二项式第一项8^1不就不能被64整除了?3^(2n+2)-8n-9=9^(n+1)-8n-9=(8+1)^(n+1)-8n-9=[8^(n
你是对的,题目有问题.简单地随便代一些实数进去就能发现.