设函数z=f(x,y)由方程e^z=xyz+cos(xy)求dz/dx ,dz/dy.求详解

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 17:23:33
设函数z=f(x,y)由方程e^z=xyz+cos(xy)求dz/dx ,dz/dy.求详解
xN@_ĴPOjbˋ4$r` ^V`K'^ $~I\:tF2+5%yR+ҩP%Ld+!!8t[aY;іQF˥Dž"Np +]f5%o̹nK3zjG~6rXLe:TYxVk#_G 4P;"aC!)"I)=!XAD 4.`  $`M X ܙڜ2 c6վXXs!KI8ܵu-ͦWJ

设函数z=f(x,y)由方程e^z=xyz+cos(xy)求dz/dx ,dz/dy.求详解
设函数z=f(x,y)由方程e^z=xyz+cos(xy)求dz/dx ,dz/dy.求详解

设函数z=f(x,y)由方程e^z=xyz+cos(xy)求dz/dx ,dz/dy.求详解
因为x、y都为自变量,不是宗量,故此题没有全微分,应只有偏微分.详解如下:
对方程两边微分:
左边:de^z=e^z*dz
右边d[xyz+cos(xy)]=xydz+yzdx+xzdy-(sinxy)*(ydx+xdy)
则有  e^z*dz=xydz+yzdx+xzdy-(sinxy)*(ydx+xdy)
   (e^z-xy)dz=(yz-sinxy)dx+(xz-sinxy)dy
dz=[(yz-sinxy)/(e^z-xy)]dx+[(xz-sinxy)/(e^z-xy)]dy
故:
∂z/∂x=(yz-sinxy)/(e^z-xy)
∂z/∂y=(xz-sinxy)/(e^z-xy)
完毕