三角形ABC中,已知cosA=5分之3,sinB=13分之5.,求sinC的值

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 01:25:06
三角形ABC中,已知cosA=5分之3,sinB=13分之5.,求sinC的值
x){IO.rtr~c훞__hknc<'[CcTO&Y-O$S;i[+l{=]ɮ>z#kGmP!XYgÓK*mMMaʝlM <'C `ONEMl $ - t54c 10sidDh8mc n) (Х;] c_\gR

三角形ABC中,已知cosA=5分之3,sinB=13分之5.,求sinC的值
三角形ABC中,已知cosA=5分之3,sinB=13分之5.,求sinC的值

三角形ABC中,已知cosA=5分之3,sinB=13分之5.,求sinC的值
三角形内角正弦大于0
sin²A+cos²A=1
所以sinA=4/5
sinB=5/13
cosB=±12/13
当cosB=12/13时
sinC=sin[180-(A+B)]
=sin(A+B)
=sinAcosB+cosAsinB
=4/5*12/13+3/5*5/13
=48/65+15/65
=63/65
当cosB=-12/13时
sinC=sin[180-(A+B)]
=sin(A+B)
=sinAcosB+cosAsinB
=4/5*(-12/13)+3/5*5/13
=-48/65+15/65
=-33/65