设f(x)在[0,1]连续,在(0,1)可导,证明存在一点ξ∈(0,1),使f(ξ)=2ξ[f(1)-f(0)]

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 09:33:44
设f(x)在[0,1]连续,在(0,1)可导,证明存在一点ξ∈(0,1),使f(ξ)=2ξ[f(1)-f(0)]
x){n_=t>:}kuB`Χ럮ߣb}}O=i}::t2> F n!X43$ lC(<ٽM#B6MBSר":MPS7M@3,dقP RW/.H̳y A

设f(x)在[0,1]连续,在(0,1)可导,证明存在一点ξ∈(0,1),使f(ξ)=2ξ[f(1)-f(0)]
设f(x)在[0,1]连续,在(0,1)可导,证明存在一点ξ∈(0,1),使f(ξ)=2ξ[f(1)-f(0)]

设f(x)在[0,1]连续,在(0,1)可导,证明存在一点ξ∈(0,1),使f(ξ)=2ξ[f(1)-f(0)]
令F(X)=f(x)-2x[f(1)-f(0)]
F(0)=f(0)
F(1)=2f(0)-f(1)
F(0)F(1)