y=[x(x+1)/(x+2)e^x]^1/3怎么求其微分.y={x(x+1)/[(x+2)e^x]}^1/3

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 03:47:29
y=[x(x+1)/(x+2)e^x]^1/3怎么求其微分.y={x(x+1)/[(x+2)e^x]}^1/3
xj0ױ.ݦ}pw&aNZ)ˉ`e:}$m|i qAI pj@EKeD-;|;}bfI+ZKa5=>S޿ڳt)_#bͲ\.j:.ZM 4Cm 'H "La* ާNϙ\_Z#pV3[?R4>d3!W+>~7v7Ze]V|VQsLOo

y=[x(x+1)/(x+2)e^x]^1/3怎么求其微分.y={x(x+1)/[(x+2)e^x]}^1/3
y=[x(x+1)/(x+2)e^x]^1/3怎么求其微分.
y={x(x+1)/[(x+2)e^x]}^1/3

y=[x(x+1)/(x+2)e^x]^1/3怎么求其微分.y={x(x+1)/[(x+2)e^x]}^1/3
等式两端取自然对数,有:
lny=(1/3)[lnx+ln(x+1)-ln(x+2)-x]
等式两端同时对x求导,有:
1/y*y导=(1/3)[1/x+1/(x+1)-1/(x+2)-1]
所以:y导=[x(x+1)/(x+2)e^x]^(1/3)*(1/3)[1/x+1/(x+1)-1/(x+2)-1]
所以:dy={[x(x+1)/(x+2)e^x]^(1/3)*(1/3)[1/x+1/(x+1)-1/(x+2)-1]}dx

不知道你这个e^x是放在分母那里还是分子那里的?