f(x)在(a,b)上二阶可导 f''(x)>0 证明 :f(x)dx在a-b上
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/24 19:57:41
x)KӨ|:gFN]Ovi(e^o|6OY )@
I@6IE_`gCw\4uOf2ɮg>
4 1j
|VAӁ UŎg
f(x)在(a,b)上二阶可导 f''(x)>0 证明 :f(x)dx在a-b上
f(x)在(a,b)上二阶可导 f''(x)>0 证明 :f(x)dx在a-b上
f(x)在(a,b)上二阶可导 f''(x)>0 证明 :f(x)dx在a-b上
题目写错了没啊
的确,题目写错了
设f(x)在[a,b]上二阶可导,且f''(x)>0,证明:函数F(x)=(f(x)-f(a))/(x-a)在(a,b]上单调增加
f(x)在(a,b)上二阶可导 f''(x)>0 证明 :f(x)dx在a-b上
F(x)在(a,b)上可导,F'(x) (a,b)上有界,则f(a,b)上有界
设f(x)在[a,b]二阶可导,且f''(x)
f(x)在a到b上连续,f(x)
已知函数f(x)在R上是减函数,a,b∈R,且a+b小于等于0,则有A.f(a)+f(b)小于等于-f(a)-f(b)B.f(a)+f(b)大于等于-f(a)-f(b)c,f(a)+f(b)小于等于f(-a)+f(-b)D,f(a)+f(b)大于等于f(-a)+f(-b)
已知函数f(x)在实数区间上为减函数,a,b∈R,a+b≤0,则有A f(a)+f(b)≤-f(a)-f(b)B f(a)+f(b)≥-f(a)-f(b)C f(a)+f(b)≤f(-a)+f(-b)D f(a)+f(b)≥f(-a)+f(-b)
函数f(x)在(-∞,+∞)上是增函数 若a+b小于等于0,则有A f(a)+f(b) 小于等于 -f(a)-f(b)B f(a)+f(b) 大于等于 -f(a)-f(b)C f(a)+f(b) 小于等于 f(-a)+f(-b)d f(a)+f(b) 大于等于 f(-a)+f(-b)
已知f(x)在实数集R上是减函数,若a+b小于等于0,则下列正确的是A.f(a)+f(b)小于等于-[f(a)+f(b)]B.f(a)+f(b)小于等于f(-a)+f(-b)C.f(a)+f(b)大于等于-[f(a)+f(b)]D.f(a)+f(b)大于等于f(-a)+f(-b)
已知f(x)在区间(-无穷,+无穷)上是减函数,a,b属于实数,且a+b≥0,则有()A.f(a)+f(b)≤-f(a)-f(b) B.f(a)+f(b)≥-f(a)-f(b) Cf(a)+f(b)≤f(-a)+f(-b) D.f(a)+f(b)≥f(-a)+f(-b)
已知f(x)在区间(-无穷,+无穷)上是减函数,a,b属于实数,且a+b≤0,则有()A.f(a)+f(b)≤-f(a)-f(b) B.f(a)+f(b)≥-f(a)-f(b) Cf(a)+f(b)≤f(-a)+f(-b) D.f(a)+f(b)≥f(-a)+f(-b)
设f(x)在[a,b]上二阶可导,且f(a)=f(b)=0,f'(a)*f'(b)>0,试证存在ξ,η属于(a,b),使f(ξ)=0及f''(η)=0
已知f(x)在R上是增函数,对任意实数x,都有f(x)0,试比较f(a)+f(b)与f(-a)+f(-b)以及f(a)*f(b)与f(-a)*f(-b)
在区间[a,b]上,若f(x)>0,f'(x)>0,f''(x)>0,则(b-a)f(a)
在区间[a,b]上,若f(x)>0,f'(x)>0,f''(x)>0,则(b-a)f(a)
设f在[a,b]上可导,|f'(x)|
f(x,y)在[a,b]×[c,
函数f(x)在[a,b]上二阶可导,(a)=f(b)=0,F(x)=(x-a)f(x),证(a,b)上至少存在一点c,F(c)=0打错了 函数f(x)在[a,b]上二阶可导,f(a)=f(b)=0,F(x)=(x-a)f(x),证(a,b)上至少存在一点c,F”(c)=0