求lim[x趋于无穷]{(x^3)*ln[(x+1)/(x-1)]-2x^2},答案为2/3,

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 15:27:20
求lim[x趋于无穷]{(x^3)*ln[(x+1)/(x-1)]-2x^2},答案为2/3,
x){)'37Ŷ'M_|j8cMh mCM} ]CX]8Zk<[d.#}c"}/KH3# Muj!TGWiiԂCh MXCy@0 誁c_\g kd 

求lim[x趋于无穷]{(x^3)*ln[(x+1)/(x-1)]-2x^2},答案为2/3,
求lim[x趋于无穷]{(x^3)*ln[(x+1)/(x-1)]-2x^2},答案为2/3,

求lim[x趋于无穷]{(x^3)*ln[(x+1)/(x-1)]-2x^2},答案为2/3,
lim[x趋于无穷]{(x^3)*ln[(x+1)/(x-1)]-2x^2}
=lim[x趋于无穷]{(x^2){xln[(x+1)/(x-1)]-2}
=lim[x趋于无穷]{xln[1+2/(x-1)]-2}/[x^(-2)]
=lim[x趋于无穷]{ln[1+2/(x-1)]+x[1+2/(x-1)]^(-1)[-2/(x-1)^2]}/[-2x^(-3)]
=lim[x趋于无穷]{-2x/(x-1)^2[-2x^(-3)]
=2/3