数学卷14:设x,y∈R,且xy≠0,则[x²+(1/y²)]×[(1/x²)+4y²]的最小值为( )

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/26 21:48:09
数学卷14:设x,y∈R,且xy≠0,则[x²+(1/y²)]×[(1/x²)+4y²]的最小值为( )
x){6uӵ˞n74yg֋u*t*ut<1Q3+Ԕ -0ԯp4cO0ԇij@%bjy6 {Ԥ~OMR>]/ ڠA0 lI2 6Z*6Ԅi6AքՎ4U85Z4FjbȠ6%Qr GL4MmMi{'c`fΓnlztm7y6}[ՋOMG~qAb(mkEe

数学卷14:设x,y∈R,且xy≠0,则[x²+(1/y²)]×[(1/x²)+4y²]的最小值为( )
数学卷14:设x,y∈R,且xy≠0,则[x²+(1/y²)]×[(1/x²)+4y²]的最小值为( )

数学卷14:设x,y∈R,且xy≠0,则[x²+(1/y²)]×[(1/x²)+4y²]的最小值为( )
设x,y∈R,且xy≠0,则[x²+(1/y²)]×[(1/x²)+4y²]的最小值为( 9)
z=[x²+(1/y²)]×[(1/x²)+4y²]
=[(x²y²+1)/y²][(1+4x²y²)/x²]
=(x²y²+1)(1+4x²y²)/(x²y²)
=(x²y²+1+4x⁴y⁴+4x²y²)/(x²y²)
=1+1/(x²y²)+4x²y²+4
=1/(x²y²)+4x²y²+5≧(2√4)+5=4+5=9
即当1/(x²y²)=4x²y²,也就是x⁴y⁴=1/4时z获得最小值9.