求证:(x^2-xy+y^2)^3+(x^2+xy+y^2)^3能被2x^2+2y^2整除

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 02:44:42
求证:(x^2-xy+y^2)^3+(x^2+xy+y^2)^3能被2x^2+2y^2整除
xRN@&&byS`[4r.Sm %&

求证:(x^2-xy+y^2)^3+(x^2+xy+y^2)^3能被2x^2+2y^2整除
求证:(x^2-xy+y^2)^3+(x^2+xy+y^2)^3能被2x^2+2y^2整除

求证:(x^2-xy+y^2)^3+(x^2+xy+y^2)^3能被2x^2+2y^2整除
有公式
a³+b³=(a+b)(a²-ab+b²)

(x^2-xy+y^2)^3+(x^2+xy+y^2)^3
=(x^2-xy+y^2+x^2+xy+y^2)((x^2+xy+y^2)^2-(x^2-xy+y^2)*(x^2+xy+y^2)+(x^2+xy-y^2)^2)
=(2x^2+2y^2)((x^2+xy+y^2)^2-(x^2-xy+y^2)*(x^2+xy+y^2)+(x^2+xy-y^2)^2)
有因式2x^2+2y^2
因此
(x^2-xy+y^2)^3+(x^2+xy+y^2)^3能被2x^2+2y^2整除

证明:根据立方和公式:a^3+b^3=(a+b)(a^2-ab+b^2),
设x^2-xy+y^2=a, x^2+xy+y^2=b
则,a+b=2x^2+2y^2
所以(x^2-xy+y^2)^3+(x^2+xy+y^2)^3=(2x^2+2y^2)(a^2-ab+b^2)
...

全部展开

证明:根据立方和公式:a^3+b^3=(a+b)(a^2-ab+b^2),
设x^2-xy+y^2=a, x^2+xy+y^2=b
则,a+b=2x^2+2y^2
所以(x^2-xy+y^2)^3+(x^2+xy+y^2)^3=(2x^2+2y^2)(a^2-ab+b^2)
(后面括号中没有把a、b还原,希望提问者看得懂)
所以(x^2-xy+y^2)^3+(x^2+xy+y^2)^3能被2x^2+2y^2整除。

收起