设函数y=f(x)在x=0的某邻域内具有n阶导数,且f(0)=f'(0)=……=f^(n-1)(0)=0试用柯西中值定理证明f(x)/x^n=f^(n)(θx)/n!,0〈θ〈1
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 01:57:49
x͑Jp_igm.7o~ns9#"naW7J
|rSߢ$s8{>wkxuNT3`XWsa6=$n6}oš"lLR;#?XܾacvkEd7ǩ8תȾB?.oKk<5ejqZj5w lת*Q8JZA+J;ixvQiH
6u@*If
@Q014C֩L1DL3"i@{nb"Ea1̴ː%#QF %#YsϥN!y'Vj
设函数y=f(x)在x=0的某邻域内具有n阶导数,且f(0)=f'(0)=……=f^(n-1)(0)=0试用柯西中值定理证明f(x)/x^n=f^(n)(θx)/n!,0〈θ〈1
设函数y=f(x)在x=0的某邻域内具有n阶导数,且f(0)=f'(0)=……=f^(n-1)(0)=0
试用柯西中值定理证明f(x)/x^n=f^(n)(θx)/n!,0〈θ〈1
设函数y=f(x)在x=0的某邻域内具有n阶导数,且f(0)=f'(0)=……=f^(n-1)(0)=0试用柯西中值定理证明f(x)/x^n=f^(n)(θx)/n!,0〈θ〈1
设函数y=f(x)在x=0 的某邻域内具有四阶导数, f(0)=f ′(0)=f ′′(0)=f ′′′(0)=0, 证明关系式:
设函数y=f(x)在x=0的某邻域内具有四阶导数,f(0)=f‘(0)=f‘’(0)=f‘’‘(0)
设函数y=f(x)在x=0的某邻域内具有n阶导数,且f(0)=f'(0)=……=f^(n-1)(0)=0试用柯西中值定理证明f(x)/x^n=f^(n)(θx)/n!,0〈θ〈1
某点导数大于0,其原函数在这点邻域内单调递增设函数y=f(x)在点x0的某个邻域N(x0,δ)内有定义,当自变量x在x0处有增量△x(设x0+△x∈N(x0,δ)),函数y=f(x)相应的增量为△y=f(x0+△x)-f(x0).导数的定义是
高等数学下册多元函数微分学及其应用中隐函数存在定理1怎样证明?求导公式:dy/dx=-Fx/Fy,隐函数存在定理1:设函数F(x,y)在点P(x.,y.)的某一邻域内具有连续偏导数,且FX(x.,y.)=0,FY(x.,y.)不等
-- -- -- -- 一个高数题-- -- -- -- -- -- -- -- -- -- -- -- -- --设函数f(x)在x=0的某邻域里有定义,且当x属于该邻域时恒有sinx
-- -- -- -- 一个高数题-- -- -- -- -- -- -- -- -- -- -- -- -- --设函数f(x)在x=0的某邻域里有定义,且当x属于该邻域时恒有sinx
隐函数存在定理1的一些疑惑设函数F(x,y)在点P(x0,y0)的某一邻域内具有连续偏导数,且F(x0,y0)=0;Fy(x0,y0)≠0,则方程F(x,y)=0在点(x0,y0)的某一邻域内有恒定能唯一确定一个连续且具
大学数学求证题,用柯西中值定理设函数y=f(x)在x=0的某邻域内具有n阶导数,且f(0)=f '(0)=f ''(0)=f '''(0)=f (4)(0)=……=f(n-1)(0)=0,证明:f(x)/x^n=f(n)(βx)/n!,其中β∈(0,1)
设函数f(x)具有连续的二阶导数,且f'(0)=0,limf''(x)/|x|=1,则f(0)是f(x)的极小值其中lim是x趋向于0时的极限.一般解题思路是通过f''(x)在0的邻域内>0得出f'(x)在0的邻域内递增,再根据x0时,f'(x)>f'(0)=0,
函数连续性定义中为什么不是去心邻域定义 设函数y=f(x)在点x0的某一邻域内有定义,如果limΔx→0Δy=limΔx→0[f(x0+Δx)-f(x0)]=0,那么就称函数y=f(x)在点x0连续这里有点搞不懂的为什么不是在点x0的某
二元函数极值设函数 z = f ( x ,y ) 在点 ( x 0 ,y 0 ) 的某邻域内连续且有一阶及二阶连续偏导数 ,又 f x ( x 0 ,y 0 ) = 0 ,f y ( x 0 ,y 0 ) = 0 ,令f xx ( x 0 ,y 0 ) = A ,f xy ( x 0 ,y 0 ) = B ,f yy ( x 0 ,y 0 ) = C ,则 f (
设f(x)在点x=o的某一邻域内具有连续的二阶导数,且lim(x->0)f(x)/x=0,证明:级数∑(n=1,∞)f(1/n)绝对收敛
一道关于证明拐点的问题!原题:设y=f(x)在x=x0的某邻域内具有三阶连续导数,如果f(x0)的二阶导数等于0,而f(x0)的三阶导数不等于0,试问(x0,f(x0))是否为拐点?为什么?{因为f(x)的三阶导数在x0
级数收敛证明设f(x)在x=0的某一邻域内具有二阶连续导数,x->0时,f(x)/x->0,证明级数∑f(1/n)绝对收敛.
多元隐函数求导设函数x=x(u,v),y=y(u,v)在点(u,v)的某一邻域内连续且有连续偏导数,又e(x,y)/e(u,v)不等于0证明方程组x=x(u,v)y=y(u,v)再点(x,y,u,v)的某一邻域内唯一确定一组单值连续且具有连续
1、设f(x)在x=a的某邻域内有定义,若 linf(x)- f(a) / a-x=e-1,则f t(a)=x→∞ 2、设由方程xy2=2所确定的隐函数为y=y(x),则dy=3、由方程sin y +xey=0所确定的曲线y=f(x)在点(0,0)处的切线斜率为:4、设y=x2lnx
设函数f(x)在x=0的某邻域内具有一阶连续导数,且f(0)不等于0,f'(0)不等于 0,若af(h)+bf(2h)-f(0)在h趋向于0时,是比h 的高阶无穷小,试确定a,b 的值