已知,xyz=0,求x/(xy+x+1)+y/(yz+y+1)+z/(xz+z+1)值?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/21 02:35:33
已知,xyz=0,求x/(xy+x+1)+y/(yz+y+1)+z/(xz+z+1)值?
x1 @Ec&9@6[؈i$6j%MOI\MA?6їJ}?$IERcW^H Qde/'7mrcb7/{֩5]We)*TXJYKIR5ID ut$!w 6yp@<o"

已知,xyz=0,求x/(xy+x+1)+y/(yz+y+1)+z/(xz+z+1)值?
已知,xyz=0,求x/(xy+x+1)+y/(yz+y+1)+z/(xz+z+1)值?

已知,xyz=0,求x/(xy+x+1)+y/(yz+y+1)+z/(xz+z+1)值?
同学,xyz=1吧?
这样的话,
原式=x/(xy+x+xyz)+y/(yz+y+xyz)+z/(xz+z+xyz)
=1/(y+1+yz)+1/(z+1+xz)+1/(x+1+xy)
=xyz/(y+xyz+yz)+1/(z+1+xz)+1/(x+1+xy)
=xz/(1+xz+z)+1/(z+1+xz)+1/(x+1+xy)
=(xz+1)/(z+1+xz)+1/(x+1+xy)
=(xz+xyz)/(z+xyz+xz)+1/(x+1+xy)
=(x+xy)/(1+xy+x)+1/(x+1+xy)
=1

xyz=0?