概率论二维正态分布问题,黄色标记的两句话很矛盾,

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/25 04:43:39
概率论二维正态分布问题,黄色标记的两句话很矛盾,
xTmOP+i]6/# //0O^`jP&LA/!Pu ス_𴅤hbblڤ<94 j6Md i|!.汑7lDK6KȨm}ݢiov٘w@7ftK>y0<䣧}ϔ\6i#d*1;7:?>^$4=O 0dº02쀽t{Gp9㜳0t}+z

概率论二维正态分布问题,黄色标记的两句话很矛盾,
概率论二维正态分布问题,黄色标记的两句话很矛盾,
 

概率论二维正态分布问题,黄色标记的两句话很矛盾,
意思是,
X,Y都服从正态分布->联合分布未必是正态分布
举的例子很明显,
密度函数((1+sinxsiny)/2π)e^((-x^2-y^2)/2)
但是分别按y,x积分得到X,Y的边缘密度都是正态分布,积分不会请私信我,这很基本的东西我觉得如果你不会就是老师失职
(这里,X和Y不是相互独立的随机变量,区别就在这)
X,Y都服从正态分布且相互独立时,它们的联合分布为边缘分布相乘
f(x,y)=fx(x)*fy(y)
所以联合分布一定是二维正态分布
函数图像是一个以(ux,uy)为中心的椭草帽
方差相等时是圆草帽
------------------------------------------------------------------------------------------------------
X,Y都服从正态且不独立,也不能说明联合分布一定不是正态分布
这个时候联合分布可能是正态分布(轴不正的椭草帽,也就是和标准的比较有旋转),也可能是别的分布

超出我的数学范畴。。。。。表示概统只学了一维,果然大神学的都不一样