过x2/a2+y2/b2=1过右焦点F2的直线交椭圆于A、B、两点,F1在左焦点三角形AF1B的周长为8,e=根号3/2求椭圆的方程是否存在圆心在原点的圆,使圆上的任意一条切线与椭圆恒有两个交点P、Q,且OP垂直于OQ,

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 11:39:44
过x2/a2+y2/b2=1过右焦点F2的直线交椭圆于A、B、两点,F1在左焦点三角形AF1B的周长为8,e=根号3/2求椭圆的方程是否存在圆心在原点的圆,使圆上的任意一条切线与椭圆恒有两个交点P、Q,且OP垂直于OQ,
xR;o`+Auu )Xk,uB] (SPj" 4 8_p&G`Խ:XwseޢI±JURDxc8MHD@NUFNWp{P'Dl  4ÄxV!_؜$P ࠂO >x4Xe=-|h6#%yFn$V !XC yd)|Y=!cjNGW u#<:%\qX KIAO˴U_ww0=dnȥutA<]߭ńl<0߽xMz(P 1+ Una%+۰92D?<8Ȩ BVe%+{6:^VMu1$^,;oGI˨i0z7;!f;roW@7IgJرvp

过x2/a2+y2/b2=1过右焦点F2的直线交椭圆于A、B、两点,F1在左焦点三角形AF1B的周长为8,e=根号3/2求椭圆的方程是否存在圆心在原点的圆,使圆上的任意一条切线与椭圆恒有两个交点P、Q,且OP垂直于OQ,
过x2/a2+y2/b2=1过右焦点F2的直线交椭圆于A、B、两点,F1在左焦点三角形AF1B的周长为8,e=根号3/2
求椭圆的方程
是否存在圆心在原点的圆,使圆上的任意一条切线与椭圆恒有两个交点P、Q,且OP垂直于OQ,若存在,求出圆方程,若不存在,说明理由.
(要第一问的结果和第二问的过程.)

过x2/a2+y2/b2=1过右焦点F2的直线交椭圆于A、B、两点,F1在左焦点三角形AF1B的周长为8,e=根号3/2求椭圆的方程是否存在圆心在原点的圆,使圆上的任意一条切线与椭圆恒有两个交点P、Q,且OP垂直于OQ,
第一问:X的平方/4+y的平方=1 第二问:设直线:y=kx+b 与椭圆方程联立得(4k的平方+1)X的平方+8kbx+4b的平方—4=0 又OP⊥OQ∴(x1,y1)(x2,y2)=0 得(k的平方+1)x1x2 b的平方 kb(x1 x2)=0化简得(5b的平方-4k的平方-4)/(4k的平方 1)=0圆心到直线的距离的平方为b的平方/k的平方 1=r的平方 又5b的平方=4k的平方 4∴r的平方为4/5∴圆的方程x2 y2=4/5 纯手打

设椭圆x2/a2+y2/b2=1(a>b>0)的左`,右焦点分别为F1,F2,若直线x=a2/c上存在点P,使PF1的中垂线过点F2,求离心率 过椭圆x2/a2+Y2/B2=1的左焦点F1作x轴的垂线交椭圆与P,F2为右焦点,若角F1PF2=60° 则椭圆的离心率 过椭圆x2/a2+Y2/B2=1的左焦点F1作x轴的垂线交椭圆与P,F2为右焦点,若角PF2F1=30°,求椭圆的离心率 数学题、在线等············设椭圆C:x2/a2+y2/b2=1(a>0b>0)的左右两个焦点分别为F1与F2,过设椭圆C:x2/a2+y2/b2=1(a>0b>0)的左右两个焦点分别为F1与F2,过右焦点F2且与x轴垂直的直线L与椭圆C相 过椭圆x2/a2+y2/b2=1(a>b>0)中心的直线交椭圆于A,B两点,右焦点为F2(c,0)则△ABF2的最大面积为? 过椭圆x2/a2+y2/b2=1(a>b>0)中心的直线交椭圆于AB两点,右焦点为F2(c,0)三角形ABF2最大面积为10,求长轴最小值 x2/a2-y2/b2=1的右焦点为F,若过F的直线与双曲线右支有且只有一个焦点,求直线斜率范围无 抛物线y2=2px焦点F恰好是双曲线x2/a2-y2/b2=1的右焦点,且双曲线过点(3a2/p,2b2/p),则该双曲线的渐近线方程 求做高中双曲线的一道数学题双曲线x2/a2-y2/b2=1的左右焦点分别为F1,F2,过左焦点F1作直线与园x2+y2=a2相切,切点为T,交双曲线右支与N,NF1的中点为M,则OM-MT的绝对值与b-a的大小关系为 已知椭圆C的方程为x2/a2+y2/b2=1(a>b>0) 双曲线x2/a2-y2/b2=1的两条渐近线为l1,l2,过椭圆C的右焦点作F作直已知椭圆C的方程为x2/a2+y2/b2=1(a>b>0)双曲线x2/a2-y2/b2=1的两条渐近线为l1,l2,过椭圆C的右焦点作F作 已经椭圆E:x2/a2+y2/b2=1(a>b>0)的右焦点恰好是抛物线C:y2=4x的焦点F,点A是椭圆E的右顶点.过点A的直...已经椭圆E:x2/a2+y2/b2=1(a>b>0)的右焦点恰好是抛物线C:y2=4x的焦点F,点A是椭圆E的右顶点.过点A的 过x2/a2+y2/b2=1过右焦点F2的直线交椭圆于A、B、两点,F1在左焦点三角形AF1B的周长为8,e=根号3/2求椭圆的方程是否存在圆心在原点的圆,使圆上的任意一条切线与椭圆恒有两个交点P、Q,且OP垂直于OQ, 已知F1,F2为双曲线x2/a2-y2/b2=1(a》0,b》0)的左,右焦点,过F2作垂直于x轴的直线交双曲线于点P,程角PF1F2=30度,求双曲线的渐进线方 双曲线习题.已知F1,F2是双曲线X2/A2-Y2/B2=1(A>0,B>0)的左、右两焦点,过F2作垂直于X轴的直线交双曲线于点P,若∠PF1F2=45°时,求双曲线的渐近线方程.我算出来是根号下带根号的结果,求验算。 解析几何题设F1、F2分别为椭圆x2/a2+y2/b2=1(a>b>0)的左、右焦点,过F2作垂直于长轴的直线与椭圆相交于A、B两点,且△ABF1为正三角形,求a/b的值 双曲线 (11 13:29:7)已知F1、F2分别是双曲线C:x2/a2-y2/b2=1(a>0,b>0)的左、右焦点.过点F1且斜率为k的直线与双曲线的右支点交于点M,若点M在x轴上的射影恰好是右焦点F2,且3/4<k<4/3,则双曲线离 F1,F2分别为双曲线x2/a2-y2/b2=1的左右两个焦点,过F2做垂直于X轴的直线交双曲线于点P,若角 PF1F2=45度 求双曲线渐进线方程 已知F1,F2分别为双曲线X2/A2-Y2/B2=1的左右焦点,过F2与双曲线一条渐近线平行的直线交另一条于M,若∠F1MF2为锐角,则离心率的取值