已知点M是正方形ABCD的边AB的中点,MN⊥DM,与∠ABC外角的平分线交于点N.1.如图一,求证:MD=MN2.若M是AB上任意一点,如图二,MD与MN是否相等,说明理由 3.若M是AB延长线上任意一点,如图三,上述结论是否
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 15:23:42
已知点M是正方形ABCD的边AB的中点,MN⊥DM,与∠ABC外角的平分线交于点N.1.如图一,求证:MD=MN2.若M是AB上任意一点,如图二,MD与MN是否相等,说明理由 3.若M是AB延长线上任意一点,如图三,上述结论是否
已知点M是正方形ABCD的边AB的中点,MN⊥DM,与∠ABC外角的平分线交于点N.1.如图一,求证:MD=MN
2.若M是AB上任意一点,如图二,MD与MN是否相等,说明理由 3.若M是AB延长线上任意一点,如图三,上述结论是否成立,说明理由
已知点M是正方形ABCD的边AB的中点,MN⊥DM,与∠ABC外角的平分线交于点N.1.如图一,求证:MD=MN2.若M是AB上任意一点,如图二,MD与MN是否相等,说明理由 3.若M是AB延长线上任意一点,如图三,上述结论是否
(1)在AD上截取AK=AM,则K为AD中点,连接KM,下面证明三角形KMD和BNM是全等的:
角BMN+角AMD=90度,角BMN+角ADM=90度,故角BMN=角ADM;角DKM=180-45=135;
角MBN=180-45=135,故DKM=MBN,且DK=MB,所以KMD和BNM是全等的,故DM=MN.
(2)结论依然成立:同样在AD上截取AK=AM,同样连接KM,同样证明KMD和BNM全等的;
角BMN=角ADM,DK=MB,角DKM=180-45=135,角MBN=180-45=135,故角DKM=角MBN,
所以KMD和BNM是全等的,故DM=MN.
2.证明:
在DA上截取DF=BM,连接FM
∵MN⊥DM,∠A=90°
∴∠BMN+∠AMD=∠MAF+∠AMD=90°
∴∠BMN=∠MAF
∵AB=AD
∴AM=AF
∴∠AFM=45°
∴∠DFM=135°
∵BN平分∠CBE
∴∠MBN=135°
∴∠MBN=∠DFM
∴△DFM≌△MBN(ASA)
∴MD=MN