在三角形ABC中,a(bcosB-ccosC)=(b^2-c^2)cosA,求三角形ABC的形状如题.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 20:21:46
在三角形ABC中,a(bcosB-ccosC)=(b^2-c^2)cosA,求三角形ABC的形状如题.
xJ0_'Z:N=8Hr^@+!SdeXِaՇ&NV7I??s}O^ݥhu{"_&v'],mw-õe~U/᠏M=9|

在三角形ABC中,a(bcosB-ccosC)=(b^2-c^2)cosA,求三角形ABC的形状如题.
在三角形ABC中,a(bcosB-ccosC)=(b^2-c^2)cosA,求三角形ABC的形状
如题.

在三角形ABC中,a(bcosB-ccosC)=(b^2-c^2)cosA,求三角形ABC的形状如题.
将cosA=(b^2+c^2-a^2)/(2bc)
cosB=(a^2+c^2-b^2)/(2ac),cosC=(a^2+b^2-c^2)/(2ab)代入得到:
a[b*(a^2+c^2-b^2)/(2ac)-c*(a^2+b^2-c^2)/(2ab)]=(b^2-c^2)(b^2+c^2-a^2)/(2bc)
去分母整理得到:
2a^2b^2-2a^2c^2=2(b^4-c^4)
即2a^2(b^2-c^2)=2(b^2-c^2)(b^2+c^2)
所以(b+c)(b-c)(b^2+c^2-a^2)=0
所以b=c或b^2+c^2=a^2
所以△ABC为等腰三角形或直角三角形