设f(x)为可导函数,且满足条件[f(1)-f(1-x)]/2x = -1,则曲线y=f(x)在点(1,f(1))处的切线斜率为()A.2 B.-1 C.1/2 D.-2
来源:学生作业帮助网 编辑:作业帮 时间:2024/12/01 07:14:37
xJ@W &٤4?BDv7ml*V"^ZOVJmLWp+xI/1Sw6j7gqu(iOq<M{/x[գ7s45W!қ\yUxr}[*^v&-5GltJeCm DUC'%^GLCQ_WV
+aqf]ׅ h!fa,Q X
檍Yq0FqYudT"V"ԒE`
3S ǴcR&=.m8p
8ilE"eb[(5ea0"Ǧɉ
设f(x)为可导函数,且满足条件[f(1)-f(1-x)]/2x = -1,则曲线y=f(x)在点(1,f(1))处的切线斜率为()A.2 B.-1 C.1/2 D.-2
设f(x)为可导函数,且满足条件[f(1)-f(1-x)]/2x = -1,则曲线y=f(x)在点(1,f(1))处的切线斜率为()
A.2 B.-1 C.1/2 D.-2
设f(x)为可导函数,且满足条件[f(1)-f(1-x)]/2x = -1,则曲线y=f(x)在点(1,f(1))处的切线斜率为()A.2 B.-1 C.1/2 D.-2
设f(x)为可导函数,且满足f(x)=∫(上限X下线1)f(t)/tdt+(x-1)e^x求f(x)
一道导数数学概念题1.设f(x)为可导函数,且满足条件lim(f(1)-f(1-x))/(2x)=-1 则曲线y=f(x)在点(1,f(1))处的切线的斜率是?2.若f(x)在x=0处可导,则f(|x|)在x=0处(不一定可导) 为什么?
设f(x)为可导函数,且满足lim[f(1)+f(1-x)]/2x=-1,x趋于0时,求曲线y=f(x)在点(1,f(1))处的斜率
设f(x)为可导函数,且满足lim[f(1)-f(1-x)]/2x=-2,x趋于0时,求曲线y=f(x)在点(1,f(1))处的斜率
设f(x)为可导函数,且满足lim[f(1)+f(1-2x)]/2x=-1,x趋于0时,求曲线y=f(x)在点(1,f(1))处的斜率设f(x)为可导函数,且满足lim[f(1)-f(1-2x)]/2x=-1,x趋于0时,求曲线y=f(x)在点(1,f(1))处的斜率
设f(x)为可导函数,且满足lim[f(1)+f(1-2x)]/2x=-1,x趋于0时,求曲线y=f(x)在点(1,f(1))处的斜率设f(x)为可导函数,且满足lim[f(1)-f(1-2x)]/2x=-1,x趋于0时,求曲线y=f(x)在点(1,f(1))处的斜率
设函数f(x)满足下列条件:(1)f(x+y)=f(x)·f(y)对一切x,y属于R(2)f(x)=1+xg(x),而lim g(x)=1 (x趋于0)试证明f(x)在R上处处可导,且f'(x)=f(x)
设f(x)为可导函数,且满足条件lim(x->0)[f(1)-f(1-x)]/2x=1,则曲线y=f(x)在(1,f(x))处的切线斜率______.
设f(x)为可导函数,且满足条件[f(1)-f(1-x)]/2x = -1,则曲线y=f(x)在点(1,f(1))处的切线斜率为()A.2 B.-1 C.1/2 D.-2
设函数f(x)可导,且满足f(x)-∫(上限为x,下限为0)f(t)dt=e^x,求f(x) 需要详解,
设f(x)为可导函数,且满足f(x)=∫(积分上限X下线1)f(t)/tdt+(x-1)e^x求f(x)
设f(x)为可导函数,且满足limf(1)-f(1-2△x)/2△x=-1,x趋于0时,求曲线y=f(x)在点(1,f(1))处的斜率
8、设f(x)为可导函数,且满足∫0到x f(t)t^2 dt=f(x)+3x 求f(x)
8、设f(x)为可导函数,且满足∫0到x f(t)t^2 dt=f(x)+3x 求f(x)
设函数f(x)在(-∞,+∞)可导,且满足f(0)=1,f'(x)=f(x),证明f(x)=e^x
导数极限问题1.函数f(x)在x=a处可导,则lim h→a [f(h)-f(a)]/(h-a)等于?怎样做?2.函数f(x)在x=a处可导,则lim h→0 [f(a+3h)-f(a-h)]/2h等于?跟第一题一样3.设函数f(x)为可导函数,且满足条件lim x→0 [f(1)-f(1-x)]/2x
设函数f(x)可导,且满足xf'(x)=f'(-x)+1,f(0)=0,求函数f(x)的极值
设函数f满足以下条件:(1) f(x+y)= f(xy),对一切x,y属于R;(2) f(x)=1+xg(x),而limg(x)=1,试证明f(x)在R上处处可导,且f‘(x)=f(x)