∫cos2x/(sinx^2*cosx^2)dx求积分

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 14:19:43
∫cos2x/(sinx^2*cosx^2)dx求积分
x){Ա:9بB_83"H R)66=_iGMR>Q la-P*ZՌ3IX ! @&TPJ79B$1B;F 1>䄧}5AqQ"[#t PB(DЀЌ:ʃF؜? 0ԇH}h$'DaF۷

∫cos2x/(sinx^2*cosx^2)dx求积分
∫cos2x/(sinx^2*cosx^2)dx求积分

∫cos2x/(sinx^2*cosx^2)dx求积分
∫cos2x/(sinx^2*cosx^2)dx=∫[(cosx)^2-(sin)^2]/(sinx^2*cosx^2)dx=∫1/(sinx)^2-1/(cosx)^2dx=-cotx-tanx+c


原式=4∫cos2x/(sin²2x)dx
=2∫dsin(2x)/(sin²(2x))
=2∫(sin(2x))^(-2)dsin(2x)
=-2/sin2x+C

∫cos2x/(sinx^2*cosx^2)dx=∫(1/sinx^2-1/cosx^2dx=∫(cscx^2-scsx^2)dx= -cotx-tanx