已知:如图,△ABC中,AB=AC,BD、CE分别是AB、AB边上的中线,BD、CE相交与点O 求证:OB=OC 已知:如图,△ABC是等边三角形,AD是BC边上的高,延长AC到E,使CE=CD 求证:AD=DE
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 02:22:21
已知:如图,△ABC中,AB=AC,BD、CE分别是AB、AB边上的中线,BD、CE相交与点O 求证:OB=OC 已知:如图,△ABC是等边三角形,AD是BC边上的高,延长AC到E,使CE=CD 求证:AD=DE
已知:如图,△ABC中,AB=AC,BD、CE分别是AB、AB边上的中线,BD、CE相交与点O
求证:OB=OC
已知:如图,△ABC是等边三角形,AD是BC边上的高,延长AC到E,使CE=CD 求证:AD=DE
已知:如图,△ABC中,AB=AC,BD、CE分别是AB、AB边上的中线,BD、CE相交与点O 求证:OB=OC 已知:如图,△ABC是等边三角形,AD是BC边上的高,延长AC到E,使CE=CD 求证:AD=DE
2、△ABC是等边三角形,AD是BC边上的高,所以角DAE=30度,CE=CD,角E=角CDE,角DCE=120度,所以角E=30度,
角DAE=角E=30度,所以 AD=DE
1,SAS来证三角形BCD和BCE全等。所以∠DBC=∠BCE,在三角形BOC中,等角对等边。OB=OC.
2,由CE=CD知,∠BDE=∠E=1/2∠ACD=30度,又因为∠DAC=1/2∠BAC=30度。所以∠E=∠DAC=30度,等角对等边,AD=CE.
因为 AB=AC, 所以 ∠ABC= ∠ACB 因为 BD、CE分别是AB、AB边上的中线 所以 BE=AB/2=AC/2=DC
在△EBC 与△DCB中 EB=DC ∠ABC= ∠ACB BC=BC △EBC ≌△DCB (SAS)
∠ECB =∠DBC OB=OC
△ABC是等边三角形 ...
全部展开
因为 AB=AC, 所以 ∠ABC= ∠ACB 因为 BD、CE分别是AB、AB边上的中线 所以 BE=AB/2=AC/2=DC
在△EBC 与△DCB中 EB=DC ∠ABC= ∠ACB BC=BC △EBC ≌△DCB (SAS)
∠ECB =∠DBC OB=OC
△ABC是等边三角形 AD是BC边上的高 ∠DAC =∠BAC/2= 30° 角DCE =180°-60° =120° CE=CD ∠E=∠CDE =30° ∠DAC=∠E
AD =DE
收起
…